
Rivet user manual

version 2.1.0a0

Andy Buckley

PPE Group, School of Physics, University of Edinburgh, UK.

E-mail: andy.buckley@ed.ac.uk

Jonathan Butterworth

HEP Group, Dept. of Physics and Astronomy, UCL, London, UK.

E-mail: J.Butterworth@ucl.ac.uk

David Grellscheid

IPPP, Durham University, UK.

E-mail: david.grellscheid@durham.ac.uk

Hendrik Hoeth

IPPP, Durham University, UK.

E-mail: hendrik.hoeth@cern.ch

Leif Lönnblad

Theoretical Physics, Lund University, Sweden.

E-mail: lonnblad@thep.lu.se

James Monk

Experimental Particle Physics, Niels Bohr Institute, Copenhagen, Denmark.

E-mail: jmonk@cern.ch

Holger Schulz

Institut für Physik, Berlin Humboldt University, Germany.

E-mail: holger.schulz@physik.hu-berlin.de

Jan Eike von Seggern

Institut für Physik, Berlin Humboldt University, Germany.

E-mail: vseggern@physik.hu-berlin.de

Frank Siegert

Physikalisches Institut, Freiburg University, Germany.

E-mail: frank.siegert@cern.ch

– 1 –

mailto:andy.buckley@ed.ac.uk
mailto:J.Butterworth@ucl.ac.uk
mailto:david.grellscheid@durham.ac.uk
mailto:hendrik.hoeth@cern.ch
mailto:lonnblad@thep.lu.se
mailto:jmonk@cern.ch
mailto:holger.schulz@physik.hu-berlin.de
mailto:vseggern@physik.hu-berlin.de
mailto:frank.siegert@cern.ch

Abstract: This is the manual and user guide for the Rivet system for the validation and

tuning of Monte Carlo event generators. As well as the core Rivet library, this manual

describes the usage of the rivet program and the AGILe generator interface library. The

depth and level of description is chosen for users of the system, starting with the basics of

using validation code written by others, and then covering sufficient details to write new

Rivet analyses and calculational components.

Keywords: Event generator, simulation, validation, tuning, QCD.

http://jhep.sissa.it/stdsearch

Contents

1. Introduction 3

1.1 Typographic conventions 3

I Getting started with Rivet 4

2. Quickstart 4

2.1 Getting generators for AGILe 5

2.2 Command completion 6

3. Running Rivet analyses 6

3.1 The FIFO idiom 6

3.2 Analysis status 7

3.3 Example rivet commands 8

4. Using analysis data 9

4.1 Histogram formats 9

4.2 Plotting and comparing data 10

4.3 Merging histograms from different Rivet runs 10

5. Outdated information for AIDA in Rivet 1.x 11

5.1 Chopping histograms 11

5.2 Normalising histograms 11

II Standard Rivet analyses 13

6. LEP and SLC analyses 13

7. Tevatron analyses 13

8. LHC analyses 13

9. SPS analyses 13

10. HERA analyses 13

11. RHIC analyses 13

12. Monte Carlo analyses 13

13. Example analyses 13

– 1 –

14. Misc. analyses 13

III How Rivet works 14

15. The science and art of physically valid MC analysis 14

16. Projections 16

16.1 Projection caching 16

16.2 Using projection caching 17

17. Analyses 18

17.1 Writing a new analysis 18

17.2 Utility classes 20

17.2.1 FourMomentum 20

17.2.2 Particle 20

17.2.3 Jet 21

17.2.4 Mathematical utilities 21

17.3 Histogramming 21

17.4 Analysis metadata 22

17.4.1 Analysis info files 22

17.4.2 Plot styling files 22

17.5 Pluggable analyses 23

17.5.1 Plugin paths 23

18. Using Rivet as a library 24

IV Appendices 29

A. Typical agile-runmc commands 29

B. Acknowledgements 29

V Bibliography 31

– 2 –

1. Introduction

This manual is a users’ guide to using the Rivet generator validation system. Rivet is a

C++ class library, which provides the infrastructure and calculational tools for particle-level

analyses for high energy collider experiments, enabling physicists to validate event generator

models and tunings with minimal effort and maximum portability. Rivet is designed to

scale effectively to large numbers of analyses for truly global validation, by transparent use

of an automated result caching system.

The Rivet ethos, if it may be expressed succinctly, is that user analysis code should be

extremely clean and easy to write — ideally it should be sufficiently self-explanatory to in

itself be a reference to the experimental analysis algorithm — without sacrificing power or

extensibility. The machinery to make this possible is intentionally hidden from the view of

all but the most prying users. Generator independence is explicitly required by virtue of all

analyses operating on the generic “HepMC” event record.

The simplest way to use Rivet is via the rivet command line tool, which analyses

textual HepMC event records as they are generated and produces output distributions in

a structured textual format. The input events are generated using the generator’s own

steering program, if one is provided; for generators which provide no default way to produce

HepMC output, the AGILe generator interface library, and in particular the agile-runmc

command which it provides, may be useful. For those who wish to embed their analyses

in some larger framework, Rivet can also be used as a library to run programmatically on

HepMC event objects with no special executable being required.

Before we get started, a declaration of intent: this manual is intended to be a guide to

using Rivet, rather than a comprehensive and painstakingly maintained reference to the

application programming interface (API) of the Rivet library. For that purpose the online

documentation at http://rivet.hepforge.org should be sufficient – in case of confusion

please contact the authors at rivet@projects.hepforge.org. Similar API documentation

is maintained for AGILe at http://agile.hepforge.org.

1.1 Typographic conventions

As is normal in computer user manuals, the typography in this manual is used to indicate

whether we are describing source code elements, commands to be run in a terminal, the

output of a command etc.

The main such clue will be the use of typewriter-style text: this indicates the name

of a command or code element — class names, function names etc. Typewriter font is also

used for commands to be run in a terminal, but in this case it will be prefixed by a dollar

sign, as in $ echo "Hello" | cat. The output of such a command on the terminal will be

typeset in sans-serif font. When we are documenting a code feature in detail (which is not

the main point of this manual), we will use square brackets to indicate optional arguments,

and italic font between angle brackets to represent an argument name which should be

replaced by a value, e.g. Event::applyProjection(〈proj 〉).

– 3 –

Part I

Getting started with Rivet

As with many things, Rivet may be meaningfully approached at several distinct levels of

detail:

• The simplest, and we hope the most common, is to use the analyses which are

already in the library to study events from a variety of generators and tunes: this is

enormously valuable in itself and we encourage all manner of experimentalists and

phenomenologists alike to use Rivet in this mode.

• A more involved level of usage is to write your own Rivet analyses — this may be

done without affecting the installed standard analyses by use of a “plugin” system

(although we encourage users who develop analyses to submit them to the Rivet

developers for inclusion into a future release of the main package). This approach

requires some understanding of programming within Rivet but you don’t need to

know about exactly what the system is doing with the objects that you have defined.

• Finally, Rivet developers and people who want to do non-standard things with

their analyses will need to know something about the messy details of what Rivet’s

infrastructure is doing behind the scenes. But you’d probably rather be doing some

physics!

The current part of this manual is for the first sort of user, who wants to get on with

studying some observables with a generator or tune, or comparing several such models.

Since everyone will fall into this category at some point, our present interest is to get you

to that all-important “physics plots” stage as quickly as possible. Analysis authors and

Rivet service-mechanics will find the more detailed information that they crave in Part III.

2. Quickstart

The point of this section is to get you up and running with Rivet as soon as possible.

Doing this by hand may be rather frustrating, as Rivet depends on several external libraries

— you’ll get bored downloading and building them by hand in the right order. Here we

recommend a much simpler way — for the full details of how to build Rivet by hand, please

consult the Rivet Web page.

Bootstrap script We have written a bootstrapping script which will download tarballs

of Rivet, AGILe and the other required libraries, expand them and build them in the right

order with the correct build flags. This is generally nicer than doing it all by hand, and

virtually essential if you want to use the existing versions of FastJet, HepMC, generator

libraries, and so on from CERN AFS: there are issues with these versions which the script

works around, which you won’t find easy to do yourself.

– 4 –

To run the script, we recommend that you choose a personal installation directory,

i.e. make a ∼/local directory for this purpose, to avoid polluting your home directory

with a lot of files. If you already use a directory of the same name, you might want to

use a separate one, say ∼/rivetlocal, such that if you need to delete everything in the

installation area you can do so without difficulties.

Now, change directory to your build area (you may also want to make this, e.g.

∼/build), and download the script:

$ wget http://rivet.hepforge.org/svn/bootstrap/rivet-bootstrap

$ chmod +x rivet-bootstrap

Now run it to get some help: $./rivet-bootstrap --help

Now to actually do the install: for example, to bootstrap Rivet and AGILe to the install

area specified as the prefix argument, run this:

$./rivet-bootstrap --install-agile --prefix=〈localdir〉
If you are running on a system where the CERN AFS area is mounted as /afs/cern.

ch, then the bootstrap script will attempt to use the pre-built HepMC[1], LHAPDF[2],

FastJet[3, 4] and GSL libraries from the LCG software area. Either way, finally the bootstrap

script will write out a file containing the environment settings which will make the system

useable. You can source this file, e.g. source rivetenv.sh to make your current shell

ready-to-go for a Rivet run (use rivetenv.csh if you are a C shell user).

You now have a working, installed copy of the Rivet and AGILe libraries, and the

rivet and agile-runmc executables: respectively these are the command-line frontend to

the Rivet analysis library, and a convenient steering command for generators which do not

provide their own main program with HepMC output. To test that they work as expected,

source the setup scripts as above, if you’ve not already done so, and run this:

$ rivet --help

This should print a quick-reference user guide for the rivet command to the terminal.

Similarly, for agile-runmc,

$ agile-runmc --help

$ agile-runmc --list-gens

$ agile-runmc --beams=pp:14000 Pythia6:425

which should respectively print the help, list the available generators and make 10 LHC-type

events using the Fortran Pythia[5] 6.423 generator. You’re on your way! If no generators are

listed, you probably need to install a local Genser-type generator repository: see section 2.1.

In this manual, because of its convenience, we will use agile-runmc as our canonical

way of producing a stream of HepMC event data; if your interest is in running a generator

like Sherpa[6], Pythia 8[7, 8], or Herwig++[9] which provides their own native way to

make HepMC output, or a generator like PHOJET which is not currently supported by

AGILe, then substitute the appropriate command in what follows. We’ll discuss using these

commands in detail in section 3.

2.1 Getting generators for AGILe

One last thing before continuing, though: the generators themselves. Again, if you’re

running on a system with the CERN LCG AFS area mounted, then agile-runmc will

– 5 –

attempt to automatically use the generators packaged by the LCG Genser team.

Otherwise, you’ll have to build your own mirror of the LCG generators. This process is

evolving with time, and so, rather than provide information in this manual which will be

outdated by the time you read it, we simply refer you to the relevant page on the Rivet

wiki: http://rivet.hepforge.org/trac/wiki/GenserMirror.

If you are interested in using a generator not currently supported by AGILe, which

does not output HepMC events in its native state, then please contact the authors (via the

Rivet developer contact email address) and hopefully we can help.

2.2 Command completion

A final installation point worth considering is using the supplied bash-shell programmable

completion setup for the rivet and agile-runmc commands. Despite being cosmetic and

semi-trivial, programmable completion makes using rivet positively pleasant, especially

since you no longer need to remember the somewhat cryptic analysis names1!

To use programmable completion, source the appropriate files from the install location:

$. 〈localdir〉/share/Rivet/rivet-completion
$. 〈localdir〉/share/AGILe/agile-completion
(if you are using the setup script rivetenv.sh this is automatically done for you). If there

is already a 〈localdir〉/etc/bash_completion.d directory in your install path, Rivet and

AGILe’s installation scripts will install extra copies into that location, since automatically

sourcing all completion files in such a path is quite standard.

3. Running Rivet analyses

The rivet executable is the easiest way to use Rivet, and will be our example throughout

this manual. This command reads HepMC events in the standard ASCII format, either

from file or from a text stream.

3.1 The FIFO idiom

Since you rarely want to store simulated HepMC events and they are computationally cheap

to produce (at least when compared to the remainder of experiment simulation chains),

we recommend using a Unix named pipe (or “FIFO” — first-in, first-out) to stream the

events. While this may seem unusual at first, it is just a nice way of “pretending” that we

are writing to and reading from a file, without actually involving any slow disk access or

building of huge files: a 1M event LHC run would occupy ∼ 60GB on disk, and typically it

takes twice as long to make and analyse the events when the filesystem is involved! Here is

an example:

$ mkfifo fifo.hepmc

$ agile-runmc Pythia6:425 -o fifo.hepmc &

$ rivet -a EXAMPLE fifo.hepmc

1Standard Rivet analyses have names which, as well as the publication date and experiment name,

incorporate the 8-digit Spires/Inspire ID code.

– 6 –

Note that the generator process (agile-runmc in this case) is backgrounded before rivet

is run.

Notably, mkfifo will not work if applied to a directory mounted via the AFS distributed

filesystem, as widely used in HEP. This is not a big problem: just make your FIFO object

somewhere not mounted via AFS, e.g. /tmp. There is no performance penalty, as the

filesystem object is not written to during the streaming process.

In the following command examples, we will assume that a generator has been set up

to write to the fifo.hepmc FIFO, and just list the rivet command that reads from that

location. Some typical agile-runmc commands are listed in A.

3.2 Analysis status

The standard Rivet analyses are divided into four status classes: validated, preliminary,

obsolete, and unvalidated (in roughly decreasing order of academic acceptability).

The Rivet “validation procedure” is not formally defined, but generally implies that an

analysis has been checked to ensure reproduction of MC points shown in the paper where

possible, and is believed to have no outstanding issues with analysis procedure or cuts.

Additionally, analyses marked as “validated” and distributed with Rivet should normally

have been code-checked by an experienced developer to ensure that the code is a good

example of Rivet usage and is not more complex than required or otherwise difficult to

read or maintain. Such analyses are regarded as fully ready for use in any MC validation or

tuning studies.

Validated analyses which implement an unfinished piece of experimental work are

considered to be trustworthy in their implementation of a conference note or similar

“informal” publication, but do not have the magic stamp of approval that comes from a

journal publication. This remains the standard mark of experimental respectability and

accordingly we do not include such analyses in the Rivet standard analysis libraries, but in

a special “preliminary” library. While preliminary analyses may be used for physics studies,

please be aware of the incomplete status of the corresponding experimental study, and also

be aware that the histograms in such analyses may be renamed or removed entirely, as may

the analysis itself.

Preliminary analyses will not have a Spires/Inspire ID, and hence on their move into

the standard Rivet analysis library they will normally undergo a name change: please

ensure when you upgrade between Rivet versions that any scripts or programs which were

using preliminary analyses are not broken by the disappearance or change of that analysis

in the newer version. The minor perils of using preliminary analyses can be avoided by the

cautious by building Rivet with the --disable-preliminary configuration flag, in which

case their temptation will not even be offered.

To make transitions between Rivet versions more smooth and predictable for users of

preliminary analyses, preliminary analyses which are superseded by a validated version will

be reclassified as obsolete and will be retained for one major version of Rivet with a status

of ”obsolete” before being removed, to give users time to migrate their run scripts, i.e. if

an analysis is marked as obsolete in version 1.4.2, it will remain in Rivet’s distribution

until version 1.5.0. Obsolete analyses may have different reference histograms from the

– 7 –

final version and will not be maintained. Obsolete analyses will not be built if either

the --disable-obsolete configuration flag is specified at build time: for convenience, the

default value of this flag is the value of the --disable-preliminary flag.

Finally, unvalidated analyses are those whose implementation is incomplete, flawed or

just troubled by doubts. Running such analyses is not a good idea if you aren’t trying to

fix them, and Rivet’s command line tools will print copious warning messages if you do.

Unvalidated analyses in the Rivet distribution are not built by default, as they are only

of interest to developers and would be distracting clutter for the majority of users: if you

really need them, building Rivet with the --enable-unvalidated configuration flag will

slake your thirst for danger.

3.3 Example rivet commands

• Getting help: rivet --help will print a (hopefully) helpful list of options which may

be used with the rivet command, as well as other information such as environment

variables which may affect the run.

• Choosing analyses: rivet --list-analyses will list the available analyses, in-

cluding both those in the Rivet distribution and any plugins which are found at

runtime. rivet --show-analysis 〈patt〉 will show a lot of details about any analy-

ses whose name match the 〈patt〉 regular expression pattern — simple bits of analysis

name are a perfectly valid subset of this. For example, rivet --show-analysis

CDF_200 exploits the standard Rivet analysis naming scheme to show details of all

available CDF experiment analyses published in the “noughties.”

• Running analyses: rivet -a DELPHI_1996_S3430090 fifo.hepmc will run the

Rivet DELPHI_1996_S3430090 [10] analysis on the events in the fifo.hepmc file

(which, from the name, is probably a filesystem named pipe rather than a normal

file). This analysis is the one originally used for the Delphi “Professor” generator

tuning. If the first event in the data file does not have appropriate beam particles, the

analysis will be disabled; since there is only one analysis in this case, the command

will exit immediately with a warning if the first event is not an e+e− event.

• Histogramming: rivet fifo.hepmc -H foo.yoda will read all the events in the

fifo.hepmc file. The -H switch is used to specify that the output histogram file will

be named foo.yoda. By default the output file is called Rivet.yoda.

• Fine-grained logging:

rivet fifo.hepmc -A -l Rivet.Analysis=DEBUG \
-l Rivet.Projection=DEBUG -l Rivet.Projection.FinalState=TRACE \
-l NEvt=WARN will analyse events as before, but will print different status information

as the run progresses. Hierarchical logging control is possible down to the level of

individual analyses and projections as shown above; this is useful for debugging

without getting overloaded with debug information from all the components at once.

– 8 –

The default level is “info”, which lies between “debug” and “warning”; the “trace”

level is for very low level information, and probably isn’t needed by normal users.

4. Using analysis data

In this section, we summarise how to use the data files which Rivet produces for plotting,

validation and tuning.

4.1 Histogram formats

Rivet produces output data in the YODA text-based format. This is a significant change

from versions of Rivet before 2.0.0, which used the AIDA programming interface and XML

format. If you do not want to use the plotting tools that come with Rivet (cf. Sec. 4.2),

you might wish to convert the YODA files to a different format for plotting: the YODA

package itself provides several scripts for this purpose.

Conversion to ROOT For many people, the first question will be “how do I plot my

Rivet histograms using ROOT?” [11]. Setting aside the suggestion of masochism that this

raises, be assured that the yoda2root script (installed by YODA if built with ROOT

support enabled) will do a direct conversion of a .yoda file into an equivalent .root file.

Equivalent, that is, as far as ROOT can represent the information in a YODA histogram:

YODA stores far more information about weights and distribution moments within bins

than ROOT can handle. For programmatic conversion, both the C++ and Python interfaces

to YODA can convert YODA objects into their ROOT equivalents (and vice versa).

Conversion to “flat format” Most of our histogramming is based around a “flat” plain

text format, which can easily be read (and written) by hand. YODA provides a script called

yoda2flat to do this conversion. Run yoda2flat -h to get usage instructions. Aside

from anything else, this is useful for simply checking the contents of an YODA file, with

yoda2flat Rivet.yoda - | less.

We’re aften asked why we don’t use ROOT internally. It’s a natural question,

given how dominant ROOT is in (experimental) particle physics data analysis and

plotting. Rivet’s not using ROOT was originally historical, but is now a matter of

our requirements. ROOT is a very monolithic system, and when we started writing Rivet,

many theorists (who we needed to be on-side) were unhappy about introducing such a

large dependency – so we settled on using the AIDA/LWH system, which could be fully

embedded in the Rivet code.

Eventually we decided that AIDA had run its course, due to such things as the awkwardness

of histogram addition and division, confusion between bin heights and areas, and lack

of support for gaps in binning (needed by several analyses). ROOT was the obvious

replacement, but after detailed consideration we decided that it wouldn’t solve the problems:

we would re-encounter many of the same weighted statistics issues we had already dealt

with in AIDA (as well as weight-handling not being enabled by default), binning gaps

– 9 –

still wouldn’t be supported, and we would block future development thanks to ROOT’s

notorious thread-unsafety and object ownership issues. Plus, how hard can histogramming

be? Having thought a lot about histogramming over the years, we decided to write YODA.

It’s taken several years (admittedly with very low manpower fractions on that task!) to

iterate to a design that we’re really happy with, but we think YODA is a really pleasant

way to do histogramming. It’s object oriented but without the global state issues of

ROOT, or the factory-based weirdnesses of AIDA. Weights are handled naturally, bins

store enough distribution moments to do some pretty advanced stuff, overflows are handled

by default, scalings (of weights or axes) and histogram arithmetic are easy and natural,

and it’s computationally efficient. It’s also not finished – completed 2D histogramming

and abstract binning ideas are still to be implemented – but that means that your desired

enhancements stand a chance of getting implemented. So let us know your thoughts!

4.2 Plotting and comparing data

Rivet comes with three commands — rivet-mkhtml, rivet-cmphistos and make-plots

— for comparing and plotting data files. These commands produce nice comparison plots of

publication quality from the YODA format text files.

The high level program rivet-mkhtml will automatically create a plot webpage from

the given YODA files. It searches for reference data automatically and uses the other two

commands internally. Example:

$ rivet-mkhtml withUE.yoda:’Title=With UE’ withoutUE.yoda:’LineColor=blue’

Run rivet-mkhtml --help to find out about all features and options.

You can also run the other two commands separately:

• rivet-cmphistos will accept a number of YODA files as input (ending in .yoda),

identify which plots are available in them, and combine the MC and reference plots

appropriately into a set of plot data files ending with .dat. More options are described

by running rivet-cmphistos --help.

Incidentally, the reference files for each Rivet analysis are to be found in the installed

Rivet shared data directory, 〈installdir〉/share/Rivet. You can find the location of

this by using the rivet-config command:

$ rivet-config --datadir

• You can plot the created data files using the make-plots command:

$ make-plots --pdf *.dat

The --pdf flag makes the output plots in PDF format: by default the output is in

PostScript (.ps), and flags for conversion to EPS and PNG are also available.

4.3 Merging histograms from different Rivet runs

The yodamerge script will take several YODA files and merge them together into a single

one. If a histogram path only occurs in one of the input files, it is copied directly to the

output. If it occurs more than once, the statistics of those histograms will be merged with

full accuracy, producing the same output as would have been obtained from a single long

– 10 –

run containing all the same events. Run yodamerge -h to get instructions on using the

script.

This exact merging only applies for histograms, of either normal or profile type.

There are heuristics in the merging script to detect whether or not there should be

a common normalization, but as with all heuristics they are not 100% guaranteed.

Also, more complex objects such as histogrammed asymmetries, of the formH1−H2/H1+H2,

are not really histograms: in YODA the division operation will automatically convert them

to the Scatter2D type, for which no moments are stored. It’s not possible to combine the

statistics of such objects in a straightforward way – so for now only one of the input copies

will be output. Watch Rivet 2.x for developments which will finally properly solve the run

combination problem, by allowing the finalize() step to be re-run on combined Rivet

run outputs!

5. Outdated information for AIDA in Rivet 1.x

The following information applies to the Rivet 1.x series and the tools provided

for AIDA histogramming. YODA should make many of these features unnecessary,

since its Python interface is far more powerful and precise. . . but this is subject to

evolution.

5.1 Chopping histograms

In some cases you don’t want to keep the complete histograms produced by Rivet. For

generator tuning purposes, for example, you want to get rid of the bins you already know

your generator is incapable of describing. You can use the script rivet-chopbins to specify

those bin-ranges you want to keep individually for each histogram in a Rivet output-file.

The bin-ranges have to be specified using the corresponding x-values of that histogram. The

usage is very simple. You can specify bin ranges of histograms to keep on the command-line

via the -b switch, which can be given multiple times, e.g.

rivet-chopbins -b /CDF_2001_S4751469/d03-x01-y01:5:13 Rivet.aida

will chop all bins with x < 5 and x > 13 from the histogram /CDF_2001_S4751469/d03-

x01y01 in the file Rivet.aida. (In this particular case, x would be a leading jet p⊥.)

5.2 Normalising histograms

Sometimes you want to use histograms normalised to, e.g., the generator cross-section or

the area of a reference-data histogram. The script rivet-rescale was designed for these

purposes. The usage is the following:

rivet-rescale -O observables -r RIVETDATA -o normalised Rivet.aida

– 11 –

By default, the normalised histograms are written to file in the AIDA-XML format. You

can also give the -f switch on the command line to produce flat histograms.

Normalising to reference data You will need an output-file of Rivet, Rivet.aida, a

folder that contains the reference-data histograms (e.g. rivet-config --datadir) and

optionally, a text-file, observables that contains the names of the histograms you would

like to normalise - those not given in the file will remain un-normalised. These are examples

of how your observables file might look like:

/CDF_2000_S4155203/d01-x01-y01

If a histogram /CDF_2000_S4155203/d01-x01-y01 is found in one of the reference-data

files in the folder specified via the -r switch, then this will result in a histogram /CDF_2000_-

S4155203/d01-x01-y01 being normalised to the area of the corresponding reference-data

histogram. You can further specify a certain range of bins to normalise:

/CDF_2000_S4155203/d01-x01-y01:2:35

will chop off the bins with x < 2 and x > 35 of both, the histogram in your Rivet.aida

and the reference-data histogram. The remaining MC histogram is then normalised to the

remaining area of the reference-data histogram.

Normalising to arbitrary areas In the file observables you can further specify an

arbitrary number, e.g. a generator cross-section, as follows:

/CDF_2000_S4155203/d01-x01-y01 1.0

will result in the histogram /CDF_2000_S4155203/d01-x01-y01 being normalised to 1.0,

and

/CDF_2000_S4155203/d01-x01-y01:2:35 1.0

will chop off the bins with x < 2 and x > 35 of the histogram

/CDF_2000_S4155203/d01-x01-y01 first and normalise the remaining histogram to one.

– 12 –

Part II

Standard Rivet analyses

In this section we describe the standard experimental analyses included with the Rivet

library. To maintain synchronisation with the code, these descriptions are generated

automatically from the metadata in the analysis objects themselves.

6. LEP and SLC analyses

7. Tevatron analyses

8. LHC analyses

9. SPS analyses

10. HERA analyses

11. RHIC analyses

12. Monte Carlo analyses

13. Example analyses

14. Misc. analyses

– 13 –

Part III

How Rivet works

Hopefully by now you’ve run Rivet a few times and got the hang of the command line

interface and viewing the resulting analysis data files. Maybe you’ve got some ideas of

analyses that you would like to see in Rivet’s library. If so, then you’ll need to know a little

about Rivet’s internal workings before you can start coding: with any luck by the end of

this section that won’t seem particularly intimidating.

The core objects in Rivet are “projections” and “analyses”. Hopefully “analyses” isn’t

a surprise — that’s just the collection of routines that will make histograms to compare

with reference data, and the only things that might differ there from experiences with

HZTool[194] are the new histogramming system and the fact that we’ve used some object

orientation concepts to make life a bit easier. The meaning of “projections”, as applied

to event analysis, will probably be less obvious. We’ll discuss them soon, but first a semi-

philosophical aside on the “right way” to do physics analyses on and involving simulated

data.

15. The science and art of physically valid MC analysis

The world of MC event generators is a wonderfully convenient one for experimentalists: we

are provided with fully exclusive events whose most complex correlations can be explored

and used to optimise analysis algorithms and some kinds of detector correction effects. It is

absolutely true that the majority of data analyses and detector designs in modern collider

physics would be very different without MC simulation.

But it is very important to remember that it is just simulation: event generators encode

much of known physics and phenomenologically explore the non-perturbative areas of QCD,

but only unadulterated experiment can really tell us about how the world behaves. The

richness and convenience of MC simulation can be seductive, and it is important that

experimental use of MC strives to understand and minimise systematic biases which may

result from use of simulated data, and to not “unfold” imperfect models when measuring

the real world. The canonical example of the latter effect is the unfolding of hadronisation

(a deeply non-perturbative and imperfectly-understood process) at the Tevatron (Run I),

based on MC models. Publishing “measured quarks” is not physics — much of the data

thus published has proven of little use to either theory or experiment in the following years.

In the future we must be alert to such temptation and avoid such gaffes — and much more

subtle ones.

These concerns on how MC can be abused in treating measured data also apply to MC

validation studies. A key observable in QCD tunings is the p⊥ of the Z boson, which has

no phase space at exactly p⊥ = 0 but a very sharp peak at O(1-2 GeV). The exact location

of this peak is mostly sensitive to the width parameter of a nucleon “intrinsic p⊥” in MC

generators, plus some soft initial state radiation and QED bremsstrahlung. Unfortunately,

all the published Tevatron measurements of this observable have either “unfolded” the QED

– 14 –

effects to the “Z p⊥” as attached to the object in the HepMC/HEPEVT event record with a

PDG ID code of 23, or have used MC data to fill regions of phase space where the detector

could not measure. Accordingly, it is very hard to make an accurate and portable MC

analysis to fit this data, without similarly delving into the event record in search of “the

boson”. While common practice, this approach intrinsically limits the precision of measured

data to the calculational order of the generator — often not analytically well-defined. We

can do better.

Away from this philosophical propaganda (which nevertheless we hope strikes some

chords in influential places. . .), there are also excellent pragmatic reasons for MC analyses

to avoid treating the MC “truth” record as genuine truth. The key argument is portability:

there is no MC generator which is the ideal choice for all scenarios, and an essential tool for

understanding sub-leading variability in theoretical approaches to various areas of physics is

to use several generators with similar leading accuracies but different sub-leading formalisms.

While the HEPEVT record as written by HERWIG and PYTHIA has become familiar to

many, there are many ambiguities in how it is filled, from the allowed graph structures

to the particle content. Notably, the Sherpa event generator explicitly elides Feynman

diagram propagators from the event record, perhaps driven by a desire to protect us from

our baser analytical instincts. The Herwig++ event generator takes the almost antipodal

approach of expressing different contributing Feynman diagram topologies in different ways

(not physically meaningful!) and seamlessly integrating shower emissions with the hard

process particles. The general trend in MC simulation is to blur the practically-induced line

between the sampled matrix element and the Markovian parton cascade, challenging many

established assumptions about “how MC works”. In short, if you want to “find” the Z to see

what its p⊥ or η spectrum looks like, many new generators may break your honed PYTHIA

code. . . or silently give systematically wrong results. The unfortunate truth is that most of

the event record is intended for generator debugging rather than physics interpretation.

Fortunately, the situation is not altogether negative: in practice it is usually as easy to

write a highly functional MC analysis using only final state particles and their physically

meaningful on-shell decay parents. These are, since the release of HepMC 2.5, standardised

to have status codes of 1 and 2 respectively. Z-finding is then a matter of choosing decay

lepton candidates, windowing their invariant mass around the known Z mass, and choosing

the best Z candidate: effectively a simplified version of an experimental analysis of the

same quantity. This is a generally good heuristic for a safe MC analysis! Note that since

it’s known that you will be running the analysis on signal events, and there are no detector

effects to deal with, almost all the details that make a real analysis hard can be ignored. The

one detail that is worth including is summing momentum from photons around the charged

leptons, before mass-windowing: this physically corresponds to the indistinguishability of

collinear energy deposits in trackers and calorimeters and would be the ideal published

experimental measurement of Drell-Yan p⊥ for MC tuning. Note that similar analyses for

W bosons have the luxury over a true experiment of being able to exactly identify the

decay neutrino rather than having to mess around with missing energy. Similarly, detailed

unstable hadron (or tau) reconstruction is unnecessary, due to the presence of these particles

in the event record with status code 2. In short, writing an effective analysis which is

– 15 –

automatically portable between generators is no harder than trying to decipher the variable

structures and multiple particle copies of the debugging-level event objects. And of course

Rivet provides lots of tools to do almost all the standard fiddly bits for you, so there’s no

excuse!

Good luck, and be careful!

16. Projections

The name “projection” is meant to evoke thoughts of projection operators, low-dimensional

slices/views of high-dimensional spaces, and other things that might appeal to physicists who

view the world through quantum-tinted lenses. A more mundane, but equally applicable,

name would be “observable calculators”, but since that’s a long name, the things they

return aren’t necessarily observable, and they all inherit from the Projection base class,

we’ll stick to that name. It doesn’t take long to get used to using the name as a synonym

for “calculator”, without being intimidated by ideas that they might be some sort of

high-powered deep magic. 90% of them is simple and self-explanatory, as a peek under the

bonnet of e.g. the all-important FinalState projection will reveal.

Projections can be relatively simple things like event shapes (i.e. scalar, vector or

tensor quantities), or arbitrarily complex things like lossy or selective views of the event

final state. Most users will see them attached to analyses by declarations in each analysis’

initialisation, but they can also be recursively “nested” inside other projections2 (provided

there are no infinite loops in the nesting chain.) Calling a complex projection in an analysis

may actually transparently execute many projections on each event.

You can find a list of all existing projections and their inheritance structure in Fig. 1.

An up-to-date version of this listing can always be found in the code documentation at

http://rivet.hepforge.org.

16.1 Projection caching

Aside from semantic issues of how the class design assigns the process of analysing events,

projections are important computationally because they live in a framework which auto-

matically stores (“caches”) their results between events. This is a crucial feature for the

long-term scalability of Rivet, as the previous experience with HZTool was that HERA

validation code ran very slowly due to repeated calculation of the same k⊥ clustering

algorithm (at that time notorious for scaling as the 3rd power of the number of particles.)

A concrete example may help in understanding how this works. Let’s say we have two

analyses which have the same run conditions, i.e. incoming beam types, beam energies,

etc. Each also uses the thrust event shape measure to define a set of basis vectors for their

analysis. For each event that gets passed to Rivet, whichever analysis gets called first will

immediately (although maybe indirectly) call a FinalState projection to get a list of stable,

2Provided there are no dependency loops in the projection chains! Strictly, only acyclic graphs of

projection dependencies are valid, but there is currently no code in Rivet that will attempt to verify this

restriction.

– 16 –

physical particles (filtering out the intermediate and book-keeping entries in the HepMC

event record). That FS projection is then “attached” to the event. Next, the first analysis

will call a Thrust projection which internally uses the same final state projection to define

the momentum vectors used in calculating the thrust. Once finished, the thrust projection

will also be attached to the event.

So far, projections have offered no benefits. However, when the second analysis runs it

will similarly try to apply its final state and thrust projections to the event. Rather than

repeat the calculations, Rivet’s infrastructure will detect that an equivalent calculation

has already been run and will just return references to the already-run projections. Since

projections can also contain and use other projections, this model allows some substantial

computational savings, without the analysis author even needing to be particularly aware

of what is going on.

Observant readers may have noticed a problem with all this projection caching cleverness:

what if the final states aren’t defined the same way? One might provide charged final state

particles only, or the acceptances (defined in pseudorapidity range and a IR p⊥ cutoff) might

differ. Rivet handles this by making each projection provide a comparison operator which is

used to decide whether the cached version is acceptable or if the calculation must be re-run

with different settings. Because projections can be nested, applying a top-level projection

to an event can spark off a cascade of comparisons, calculations and cache accesses, making

use of existing results wherever possible.

16.2 Using projection caching

So far this is all theory — how does one actually use projections in Rivet? First, you should

understand that projections, while semantically stored within each other, are actually

all registered with a central ProjectionHandler object.3 The reason for this central

registration is to ensure that all projections’ lifespans are managed in a consistent way,

and to protect projection and analysis authors from some technical subtleties in how C++

polymorphism works.

Inside the constructor of a Projection or the init method of an Analysis class, you

must call the addProjection function. This takes two arguments, the projection to be

registered (by const reference), and a name. The name is local to the parent object, so you

need not worry about name clashes between objects. A very important point is that the

passed Projection is not the one that is actually centrally registered — that distinction

belongs to a newly created heap object which is created within the addProjection method

by means of the overloaded Projection::clone() method. Hence it is completely safe

— and recommended — to use only local (stack) objects in Projection and Analysis

constructors.

3As of version 1.1 onwards — previously, they were stored as class members inside other Projection s

and Analysis classes.

– 17 –

At this point, if you have rightly bought into C++ ideas like super-strong type-safety,

this proliferation of dynamic casting may worry you: the compiler can’t possibly

check if a projection of the requested name has been registered, nor whether the

downcast to the requested concrete type is legal. These are very legitimate concerns!

In truth, we’d like to have this level of extra safety: who wouldn’t? But in the past, when

projections were held as members of ProjectionApplier classes rather than in the central

ProjectionHandler repository, the benefits of the strong typing were outweighed by more

serious and subtle bugs relating to projection lifetime and object “slicing”. At least when the

current approach goes wrong it will throw an unmissable runtime error — until it’s fixed, of

course! — rather than silently do the wrong thing.

Our problems here are a microcosm of the perpetual language battle between strict and

dynamic typing, runtime versus compile time errors. In practice, this manifests itself as a

trade-off between the benefits of static type safety and the inconvenience of the type-system

gymnastics that it engenders. We take some comfort from the number of very good programs

have been and are still written in dynamically typed, interpreted languages like Python,

where virtually all error checking (barring first-scan parsing errors) must be done at runtime.

By pushing some checking to the domain of runtime errors, Rivet’s code is (we believe) in

practice safer, and certainly more clear and elegant. However, we believe that with runtime

checking should come a culture of unit testing, which is not yet in place in Rivet.

As a final thought, one reason for Rivet’s internal complexity is that C++ is just not a

very good language for this sort of thing: we are operating on the boundary between event

generator codes, number crunching routines (including third party libraries like FastJet)

and user routines. The former set unavoidably require native interfaces and benefit from

static typing; the latter benefit from interface flexibility, fast prototyping and syntactic

clarity. Maybe a future version of Rivet will break through the technical barriers to a

hybrid approach and allow users to run compiled projections from interpreted analysis code.

For now, however, we hope that our brand of “slightly less safe C++” will be a pleasant

compromise.

17. Analyses

17.1 Writing a new analysis

This section provides a recipe that can be followed to write a new analysis using the Rivet

projections.

Every analysis must inherit from Rivet::Analysis and, in addition to the constructor,

must implement a minimum of three methods. Those methods are init(), analyze(const

Rivet::Event&) and finalize(), which are called once at the beginning of the analysis,

once per event and once at the end of the analysis respectively.

The new analysis should include the header for the base analysis class plus whichever

Rivet projections are to be used, and should work under the Rivet namespace. Since

– 18 –

analyses are hardly ever intended to be inherited from, they are usually implemented within

a single .cc file with no corresponding header. The skeleton of a new analysis named

UserAnalysis that uses the FinalState projection might therefore start off looking like

this, in a file named UserAnalysis.cc:

#include "Rivet/Analysis.hh"

namespace Rivet {

class UserAnalysis : public Analysis {

public:

UserAnalysis() : Analysis("USERANA") { }

void init() { ... }

void analyze(const Event& event) { ... }

void finalize() { ... }

};

}

The constructor body is usually left empty, as all event loop setup is done in the

init() method: the one required constructor feature is to make a call to its base Analysis

constructor, passing a string by which the analysis will register itself with the Rivet

framework. This name is the one exposed to a command-line or API user of this analysis:

usually it is the same as the class name, which for official analyses is always in upper case.

Early versions of Rivet required the user to declare allowed beam types, energies,

whether a cross-section is required, etc. in the analysis constructor via methods

like setBeams(...) and setNeedsCrossSection(...). This information is now

much preferred to be taken from the .info file for the analysis, and must be done this way

in analyses submitted for inclusion in future Rivet releases.

The init() method for the UserAnalysis class should add to the analysis all of the

projections that will be used. Projections can be added to an analysis with a call to

addProjection(Projection, std::string), which takes as argument the projection to

be added and a name by which that projection can later be referenced. For this example

the FinalState projection is to be referenced by the string "FS" to provide access to all of

the final state particles inside a detector pseudorapidity coverage of ±5.0. The syntax to

create and add that projection is as follows:

init() {

const FinalState fs(-5.0, 5.0);

addProjection(fs, "FS");

}

– 19 –

A second task of the init() method is the booking of all histograms which are later to

be filled in the analysis code. Information about the histogramming system can be found in

Section 17.3.

17.2 Utility classes

Rivet provides quite a few object types for physics purposes, such as three- and four-vectors,

matrices and Lorentz boosts, and convenience proxy objects for e.g. particles and jets. We

now briefly summarise the most important features of some of these objects; more complete

interface descriptions can be found in the generated Doxygen web pages on the Rivet web

site, or simply by browsing the relevant header files.

17.2.1 FourMomentum

The FourMomentum class is the main physics vector that you will encounter when writing

Rivet analyses. Its functionality and interface are similar to the CLHEP HepLorentzVector

with which many users will be familiar, but without some of the historical baggage.

Vector components The FourMomentum E(), px(), py(), pz() & mass() methods are

(unsurprisingly) accessors for the vector’s energy, momentum components and mass. The

vector3() method returns a spatial Vector3 object, i.e. the 3 spatial components of the

4-vector.

Useful properties The pT() and Et() methods are used to calculate the transverse

momentum and transverse energy. Angular variables are accessed via the eta(), phi()

and theta() for the pseudorapidity, azimuthal angle and polar angle respectively. More

explicitly named versions of these also exist, named pseudorapidity(), azimuthalAngle()

and polarAngle(). Finally, the true rapidity is accessed via the rapidity() method. Many

of these functions are also available as external functions, as are algebraic functions such as

cross(vec3a, vec3b), which is perhaps more palatable than vec3a.cross(vec3b).

Distances The η–φ distance between any two four-vectors (and/or three-vectors) can

be computed using a range of overloaded external functions of the type deltaR(vec1,

vec2). Angles between such vectors can be calculated via the similar angle(vec1, vec2)

functions.

17.2.2 Particle

This class is a wrapper around the HepMC GenParticle class. Particle objects are usually

obtained as a vector from the particles() method of a FinalState projection. Rather

than having to directly use the HepMC objects, and e.g. translate HepMC four-vectors

into the Rivet equivalent, several key properties are accessed directly via the Particle

interface (and more may be added). The main methods of interest are momentum(), which

returns a FourMomentum, and pdgId(), which returns the PDG particle ID code. The PDG

code can be used to access particle properties by using functions such as PID::isHadron(),

PID::threeCharge(), etc. (these are defined in Rivet/Tools/ParticleIDMethods.hh.)

– 20 –

17.2.3 Jet

Jets are obtained from one of the jet accessor methods of a projection that implements the

JetAlg interface, e.g. FastJets::jetsByPt() (this returns the jets sorted by p⊥, such that

the first element in the vector is the hardest jet — usually what you want.) The most useful

methods are particles(), momenta(), momentum() (a representative FourMomentum), and

some checks on the jet contents such as containsParticleId(pid), containsCharm() and

containsBottom().

17.2.4 Mathematical utilities

The Rivet/Math/MathUtils.hh header defines a variety of mathematical utility functions.

These include testing functions such as isZero(a), fuzzyEquals(a, b) and inRange(a,

low, high), whose purpose is hopefully self-evident, and angular range-mapping functions

such as mapAngle0To2Pi(a), mapAngleMPiToPi(a), etc.

17.3 Histogramming

Rivet’s histogramming uses the AIDA interfaces, composed of abstract classes IHistogram1D,

IProfile1D, IDataPointSet etc. which are built by a factories system. Since it’s our

feeling that much of the factory infrastructure constitutes an abstraction overload, we

provide histogram booking functions as part of the Analysis class, so that in the init

method of your analysis you should book histograms with function calls like:

void init() {

_h_one = bookHistogram1D(2,1,1);

_h_two = bookProfile1D(3,1,2);

_h_three = bookHistogram1D("d00-x00-y00", 50, 0.0, 1.0);

}

Here the first two bookings have a rather cryptic 3-integer sequence as the first arguments.

This is the recommended scheme, as it makes use of the exported data files from HepData,

in which 1D histograms are constructed from a combination of x and y axes in a dataset

d, corresponding to names of the form d〈d〉-x〈x 〉-y〈y〉. This auto-booking of histograms

saves you from having to copy out reams of bin edges and values into your code, and makes

sure that any data fixes in HepData are easily propagated to Rivet. The reference data

files which are used for these booking methods are distributed and installed with Rivet,

you can find them in the 〈installdir〉/share/Rivet directory of your installation. The third

booking is for a histogram for which there is no such HepData entry: it uses the usual

scheme of specifying the name, number of bins and the min/max x-axis limits manually.

Filling the histograms is done in the MyAnalysis::analyse() function. Remember to

specify the event weight as you fill:

void analyze(const Event& e) {

[projections, cuts, etc.]

...

_h_one->fill(pT, event.weight());

– 21 –

_h_two->fill(pT, Nch, event.weight());

_h_three->fill(fabs(eta), event.weight());

}

Finally, histogram normalisations, scalings, divisions etc. are done in the MyAnalysis::-

finalize() method. For normalisations and scalings you will find appropriate con-

venience methods Analysis::normalize(histo, norm) and Analysis::scale(histo,

scalefactor). Many analyses need to be scaled to the generator cross-section, with

the number of event weights to pass cuts being included in the normalisation factor: for

this you will have to track the passed-cuts weight sum yourself via a member variable, but

the analysis class provides Analysis::crossSection() and Analysis::sumOfWeights()

methods to access the pre-cuts cross-section and weight sum respectively.

17.4 Analysis metadata

To keep the analysis source code uncluttered, and to allow for iteration of data plot

presentation without re-compilation and/or re-running, Rivet prefers that analysis metadata

is provided via separate files rather than hard-coded into the analysis library. There are

two such files: an analysis info file, with the suffix .info, and a plot styling file, with the

suffix .plot.

17.4.1 Analysis info files

The analysis info files are in YAML format: a simple data format intended to be cleaner

and more human-readable/writeable than XML. As well as the analysis name (which must

coincide with the filename and the name provided to the Analysis constructor, this file

stores details of the collider, experiment, date of the analysis, Rivet/data analysis authors

and contact email addresses, one-line and more complete descriptions of the analysis, advice

on how to run it, suggested generator-level cuts, and BibTeX keys and entries for this user

manual. It is also where the validation status of the analysis is declared:

See the standard analyses’ info files for guidance on how to populate this file. Info files

are searched for in the paths known to the Rivet::getAnalysisInfoPaths() function,

which many be prepended to using the $RIVET_INFO_PATH environment variable: the first

matching file to be found will be used.

17.4.2 Plot styling files

The .plot files are in the header format for the make-plots plotting system and are picked

up and merged with the plot data by the Rivet compare-histos script which produces

the make-plots input data files. All the analysis’ plots should have a BEGIN PLOT ...

END PLOT section in this file, specifying the title and x/y-axis labels (the Title, and

XLabel/YLabel directives). In addition, you can use this file to choose whether the x

and/or y axes should be shown with a log scale (LogX, LogY), to position the legend box

to minimise clashes with the data points and MC lines (LegendXPos, LegendYPos) and

any other valid make-plots directives including special text labels or forced plot range

boundaries. Regular expressions may be used to apply a directive to all analysis names

– 22 –

matching a pattern rather than having to specify the same directive repeatedly for many

plots.

See the standard analyses’ plot files and the make-plots documentation (e.g. on the

Rivet website) for guidance on how to write these files. Plot info files are searched for in the

paths known to the Rivet::getAnalysisPlotPaths() function, which many be prepended

to using the $RIVET_PLOT_PATH environment variable. As usual, the first matching file to

be found will be used.

17.5 Pluggable analyses

Rivet’s standard analyses are not actually built into the main libRivet library: they are

loaded dynamically at runtime as an analysis plugin library. While you don’t need to worry

too much about the technicalities of this, it does mean that you can similarly write analyses

of your own, compile them into a similar plugin library and run them from rivet without

ever having to modify any of the main Rivet sources or build system. This means that you

can write and run your own analyses with a system-installed copy of Rivet, and not have to

re-patch the main library when a newer version comes out (although chances are you will

have to recompile, since the binary interface usually change between releases.)

To get started writing your analysis and understand the plugin system better, you

should check out the documentation in the wiki on the Rivet website: http://rivet.

hepforge.org/trac/wiki/. The standard rivet-mkanalysis and rivet-buildplugin

scripts can respectively be used to make an analysis template with many “boilerplate”

details filled in (including bibliographic information from Inspire if available), and to build

a plugin library with the appropriate compiler options.

17.5.1 Plugin paths

To load pluggable analyses you will need to set the $RIVET_ANALYSIS_PATH environment

variable: this is a standard colon-separated UNIX path, specifying directories in which

analysis plugin libraries may be found. If it is unspecified, the Rivet loader system will

assume that the only entry is the lib directory in the Rivet installation area. Specifying

the variable adds new paths for searching before the standard library area, and they will be

searched in the left-to-right order in the path variable. If analyses with duplicate names

are found, a warning message is issued and the first version to have been found will be

used. This allows you to override standard analyses with same-named variants of your own,

provided they are loaded from different directories.

Several further environment variables are used to load analysis reference data and

metadata files:

$RIVET_REF_PATH: A standard colon-separated path list, whose elements are searched

in order for reference histogram files. If the required file is not found in this path,

Rivet will fall back to looking in the analysis library paths (for convenience, as it

is normal for plugin analysis developers to put analysis library and data files in the

same directory and it would be annoying to have to set several variables to make this

work), and then the standard Rivet installation data directory.

– 23 –

$RIVET_INFO_PATH: The path list searched first for analysis .info metadata files. The

search fallback mechanism works as for $RIVET_REF_PATH.

$RIVET_PLOT_PATH: The path list searched first for analysis .plot presentation style files.

The search fallbacks again work as for $RIVET_REF_PATH.

These paths can be accessed from the API using the Rivet::getAnalysisLibPaths()

etc. functions, and can be searched for files using the Rivet lookup rules via the Rivet::find-

AnalysisLibFile(filename) etc. functions. These functions are also available in the

Python rivet module. See the Doxygen documentation for more details.

18. Using Rivet as a library

You don’t have to use Rivet via the provided command-line programmes: for some applica-

tions you may want to have more direct control of how Rivet processes events. Here are

some possible reasons:

• You need to not waste CPU cycles and I/O resources on rendering HepMC events to a

string representation which is immediately read back in. The FIFO idiom (Section 3.1)

is not perfect: we use it in circumstances where the convenience and decoupling

outweighs the CPU cost.

• You don’t want to write out histograms to file, preferring to use them as code objects.

Perhaps for applications which want to manipulate histogram data periodically before

the end of the run.

• You enjoy tormenting Rivet developers who know their API is far from perfect, by

complaining if it changes!

• . . . and many more!

The Rivet API (application programming interface) has been designed in the hope of very

simple integration into other applications: all you have to do is create a Rivet::Analysis-

Handler object, tell it which analyses to apply on the events, and then call its analyse(evt)

method for each HepMC event – wherever they come from. The API is (we hope) stable,

with the exception of the histogramming parts.

The histogramming interfaces in Rivet have long been advertised as marked for

replacement, and while progress in that area has lagger far behind our ambitions,

it will happen with the 2.0.0 release, with unavoidable impact on the related parts

of the API. You have been warned!

The API is available for C++ and, in a more restricted form, Python. We will explain

the C++ version here; if you wish to operate Rivet (or e.g. use its path-searching capabilities

to find Rivet-related files in the standard way) from Python then take a look inside the rivet

– 24 –

and rivet-* Python scripts (e.g. less ‘which rivet‘) or use the module documentation

cf.

> python

>>> import rivet

>>> help(rivet)

And now the C++ API. The best way to explain is, of course, by example. Here is a

simple C++ example based on the test/testApi.cc source which we use in development

to ensure continuing API functionality:

#include "Rivet/AnalysisHandler.hh"

#include "HepMC/GenEvent.h"

#include "HepMC/IO_GenEvent.h"

using namespace std;

int main() {

// Create analysis handler

Rivet::AnalysisHandler rivet;

// Specify the analyses to be used

rivet.addAnalysis("D0_2008_S7554427");

vector<string> moreanalyses(1, "D0_2007_S7075677");

rivet.addAnalyses(moreanalyses);

// The usual mess of reading from a HepMC file!

std::istream* file = new std::fstream("testApi.hepmc", std::ios::in);

HepMC::IO_GenEvent hepmcio(*file);

HepMC::GenEvent* evt = hepmcio.read_next_event();

double sum_of_weights = 0.0;

while (evt) {

// Analyse the current event

rivet.analyze(*evt);

sum_of_weights += evt->weights()[0];

// Clean up and get next event

delete evt; evt = 0;

hepmcio >> evt;

}

delete file; file = 0;

rivet.setCrossSection(1.0);

– 25 –

rivet.setSumOfWeights(sum_of_weights); // not necessary, but allowed

rivet.finalize();

rivet.writeData("out");

return 0;

}

Compilation of this, if placed in a file called myrivet.cc, into an executable called

myrivet is simplest and most robust with use of the rivet-config script:

g++ myrivet.cc -o myrivet ‘rivet-config --cppflags --ldflags --libs‘

It should just work!

If you are doing something a bit more advanced, for example using the AGILe package’s

similar API to generate Fortran generator Pythia events and pass them directly to the

Rivet analysis handler, you will need to also add the various compiler and linker flags for

the extra libraries, e.g.

g++ myrivet.cc -o myrivet \

‘rivet-config --cppflags --ldflags --libs‘ \

‘agile-config --cppflags --ldflags --libs‘

would be needed to compile the following AGILe+Rivet code:

#include "AGILe/Loader.hh"

#include "AGILe/Generator.hh"

#include "Rivet/AnalysisHandler.hh"

#include "HepMC/GenEvent.h"

#include "HepMC/IO_GenEvent.h"

using namespace std;

int main() {

// Have a look what generators are available

AGILe::Loader::initialize();

const vector<string> gens = AGILe::Loader::getAvailableGens();

foreach (const string& gen, gens) {

cout << gen << endl;

}

// Load libraries for a specific generator and instantiate it

AGILe::Loader::loadGenLibs("Pythia6:425");

AGILe::Generator* generator = AGILe::Loader::createGen();

cout << "Running " << generator->getName()

<< " version " << generator->getVersion() << endl;

– 26 –

// Set generator initial state for LEP

const int particle1 = AGILe::ELECTRON;

const int particle2 = AGILe::POSITRON;

const double sqrts = 91;

generator->setInitialState(particle1, energy1, sqrts/2.0, sqrts/2.0);

generator->setSeed(14283);

// Set some parameters

generator->setParam("MSTP(5)", "320"); //< PYTHIA tune

// ...

// Set up Rivet with a LEP analysis

Rivet::AnalysisHandler rivet;

rivet.addAnalysis("DELPHI_1996_S3430090");

// Run events

const int EVTMAX = 10000;

HepMC::GenEvent evt;

for (int i = 0; i < EVTMAX; ++i) {

generator->makeEvent(evt);

rivet.analyze(evt);

}

// Finalize Rivet and generator

rivet.finalize();

rivet.writeData("out.aida");

generator->finalize();

return 0;

}

– 27 –

Figure 1: List of available projections and their inheritance structure.

– 28 –

Part IV

Appendices

A. Typical agile-runmc commands

• Simple run: agile-runmc Herwig:6510 -P lep1.params --beams=LEP:91.2 \
-n 1000 will use the Fortran Herwig 6.5.10 generator (the -g option switch) to generate

1000 events (the -n switch) in LEP1 mode, i.e. e+e− collisions at
√
s = 91.2 GeV.

• Parameter changes: agile-runmc Pythia6:425 --beams=LEP:91.2 \
-n 1000 -P myrun.params -p "PARJ(82)=5.27" will generate 1000 events using

the Fortran Pythia 6.423 generator, again in LEP1 mode. The -P switch is ac-

tually the way of specifying a parameters file, with one parameter per line in

the format “〈key〉 〈value〉”: in this case, the file lep1.params is loaded from the

〈installdir〉/share/AGILe directory, if it isn’t first found in the current directory. The

-p (lower-case) switch is used to change a named generator parameter, here Pythia’s

PARJ(82), which sets the parton shower cutoff scale. Being able to change parameters

on the command line is useful for scanning parameter ranges from a shell loop, or

rapid testing of parameter values without needing to write a parameters file for use

with -P.

• Writing out HepMC events: agile-runmc Pythia6:425 --beams=LHC:14TeV

-n 50 -o out.hepmc -R will generate 50 LHC events with Pythia. The -o switch is

being used here to tell agile-runmc to write the generated events to the out.hepmc

file. This file will be a plain text dump of the HepMC event records in the standard

HepMC format. Use of filename “-” will result in the event stream being written to

standard output (i.e. dumping to the terminal.

B. Acknowledgements

Rivet development has been supported by a variety of sources:

• All authors acknowledge support from the EU MCnet research network. MCnet is a

Marie Curie Training Network funded under Framework Programme 6 contract MRTN-

CT-2006-035606 and Framework Programme 7 contract PITN-GA-2012-315877.

• Andy Buckley has been supported by grants from the UK Science and Technology

Facilities Council (Special Project Grant), the Scottish Universities Physics Alliance

(Advanced Research Fellowship), the Royal Society (Research Fellowship), the In-

stitute for Particle Physics Phenomenology (Associateship), and a CERN Scientific

Associateship.

• Holger Schulz and Frank Siegert acknowledge the support of the German Research

Foundation (DFG).

– 29 –

We also wish to thank the CERN MCplots (http://mcplots.cern.ch) team, and

especially Anton Karneyeu, for doing the pre-release testing since the Rivet 1.5 series and

pointing out all the bits that we got wrong: Rivet is a much better system as a result!

– 30 –

Part V

Bibliography

References

[1] M. Dobbs and J. B. Hansen, Comput. Phys. Commun. 134, 41 (2001).

[2] M. R. Whalley, D. Bourilkov, and R. C. Group, (2005), hep-ph/0508110.

[3] M. Cacciari and G. P. Salam, Phys. Lett. B641, 57 (2006), hep-ph/0512210.

[4] M. Cacciari and G. Salam and G.Soyez, http://www.fastjet.fr.

[5] T. Sjostrand, S. Mrenna, and P. Skands, JHEP 05, 026 (2006), hep-ph/0603175.

[6] T. Gleisberg et al., JHEP 0902, 007 (2009), 0811.4622.

[7] T. Sjostrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008),

0710.3820.

[8] T. Sjostrand, (2008), 0809.0303.

[9] M. Bahr et al., Eur. Phys. J. C58, 639 (2008), 0803.0883.

[10] DELPHI Collaboration, P. Abreu et al., Z. Phys. C73, 11 (1996).

[11] I. Antcheva et al., Comput. Phys. Commun. 180, 2499 (2009).

[12] ALEPH Collaboration, D. Decamp et al., Phys. Lett. B273, 181 (1991).

[13] ALEPH Collaboration, D. Buskulic et al., Z. Phys. C69, 365 (1996).

[14] ALEPH Collaboration, R. Barate et al., Phys. Rept. 294, 1 (1998).

[15] ALEPH COLLABORATION Collaboration, R. Barate et al., Eur.Phys.J. C16, 597 (2000),

hep-ex/9909032.

[16] ALEPH Collaboration, A. Heister et al., Phys. Lett. B512, 30 (2001), hep-ex/0106051.

[17] ALEPH COLLABORATION Collaboration, A. Heister et al., Phys.Lett. B528, 19 (2002),

hep-ex/0201012.

[18] ALEPH Collaboration, A. Heister et al., Eur. Phys. J. C35, 457 (2004).

[19] DELPHI Collaboration, P. Abreu et al., Z. Phys. C67, 543 (1995).

[20] DELPHI Collaboration, P. Abreu et al., Phys. Lett. B449, 364 (1999).

[21] DELPHI Collaboration, P. Abreu et al., Phys. Lett. B479, 118 (2000), hep-ex/0103022.

[22] JADE Collaboration, P. Pfeifenschneider et al., Eur. Phys. J. C17, 19 (2000),

hep-ex/0001055.

[23] OPAL Collaboration, P. D. Acton et al., Z. Phys. C58, 405 (1993).

[24] OPAL Collaboration, R. Akers et al., Z. Phys. C63, 181 (1994).

[25] OPAL Collaboration, G. Alexander et al., Phys. Lett. B358, 162 (1995).

[26] OPAL COLLABORATION Collaboration, G. Alexander et al., Z.Phys. C70, 197 (1996).

[27] OPAL Collaboration, G. Alexander et al., Z. Phys. C73, 569 (1997).

– 31 –

[28] OPAL Collaboration, K. Ackerstaff et al., Phys. Lett. B412, 210 (1997), hep-ex/9708022.

[29] OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C4, 19 (1998), hep-ex/9802013.

[30] OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C5, 411 (1998), hep-ex/9805011.

[31] OPAL Collaboration, K. Ackerstaff et al., Eur. Phys. J. C7, 369 (1999), hep-ex/9807004.

[32] OPAL COLLABORATION Collaboration, G. Abbiendi et al., Eur.Phys.J. C17, 373 (2000),

hep-ex/0007017.

[33] OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C20, 601 (2001), hep-ex/0101044.

[34] OPAL COLLABORATION Collaboration, G. Abbiendi et al., Phys.Lett. B550, 33 (2002),

hep-ex/0211007, 18 pages, 5 figures Report-no: CERN-EP-2002-0079.

[35] OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C40, 287 (2005), hep-ex/0503051.

[36] SLD Collaboration, K. Abe et al., Phys. Lett. B386, 475 (1996), hep-ex/9608008.

[37] SLD Collaboration, K. Abe et al., Phys. Rev. D59, 052001 (1999), hep-ex/9805029.

[38] SLD Collaboration, K. Abe et al., Phys. Rev. D65, 092006 (2002), hep-ex/0202031,

[Erratum-ibid.D66:079905,2002].

[39] SLD Collaboration, K. Abe et al., Phys. Rev. D69, 072003 (2004), hep-ex/0310017.

[40] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 61, 1819 (1988).

[41] CDF Collaboration, F. Abe et al., Phys. Rev. D41, 2330 (1990).

[42] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 71, 679 (1993).

[43] CDF Collaboration, F. Abe et al., Phys. Rev. D50, 5562 (1994).

[44] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 75, 608 (1995).

[45] CDF Collaboration, F. Abe et al., Phys. Rev. D54, 4221 (1996), hep-ex/9605004.

[46] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 77, 5336 (1996), hep-ex/9609011.

[47] CDF Collaboration, F. Abe et al., Phys. Rev. D56, 2532 (1997).

[48] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 80, 3461 (1998).

[49] CDF Collaboration, T. Affolder et al., Phys. Rev. Lett. 84, 845 (2000), hep-ex/0001021.

[50] CDF Collaboration, A. A. Affolder et al., Phys. Rev. D61, 091101 (2000), hep-ex/9912022.

[51] CDF Collaboration, A. A. Affolder et al., Phys. Rev. D64, 012001 (2001), hep-ex/0012013.

[52] CDF Collaboration, A. A. Affolder et al., Phys. Rev. D64, 032001 (2001), hep-ph/0102074.

[53] CDF Collaboration, T. Affolder et al., Phys. Rev. D65, 092002 (2002).

[54] CDF Collaboration, D. Acosta et al., Phys. Rev. D65, 072005 (2002).

[55] CDF Collaboration, D. Acosta et al., Phys. Rev. D70, 072002 (2004), hep-ex/0404004.

[56] CDF Collaboration, D. E. Acosta et al., Phys. Rev. Lett. 95, 022003 (2005), hep-ex/0412050.

[57] CDF Collaboration, D. E. Acosta et al., Phys. Rev. D71, 112002 (2005), hep-ex/0505013.

[58] CDF Collaboration, A. Abulencia et al., Phys. Rev. D74, 071103 (2006), hep-ex/0512020.

[59] CDF Collaboration, A. Abulencia et al., Phys. Rev. D74, 032008 (2006), hep-ex/0605099.

– 32 –

[60] CDF Collaboration, A. Abulencia et al., Phys. Rev. D75, 092006 (2007), hep-ex/0701051.

[61] CDF Collaboration, T. Aaltonen et al., Phys. Rev. Lett. 100, 102001 (2008), 0711.3717.

[62] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D77, 011108 (2008), 0711.4044.

[63] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D78, 072005 (2008), 0806.1699.

[64] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D78, 052006 (2008), 0807.2204.

[65] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D79, 112002 (2009), 0812.4036.

[66] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D79, 052008 (2009), 0812.4458.

[67] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D79, 112005 (2009), 0904.1098.

[68] CDF Collaboration, T. Aaltonen et al., (2009), 0908.3914.

[69] CDF Collaboration, T. Aaltonen et al., Phys. Rev. D80, 111106 (2009), 0910.3623.

[70] D0 Collaboration, S. Abachi et al., Phys. Rev. D53, 6000 (1996), hep-ex/9509005.

[71] D0 Collaboration, S. Abachi et al., Phys. Rev. Lett. 77, 595 (1996), hep-ex/9603010.

[72] D0 Collaboration, B. Abbott et al., Phys. Lett. B513, 292 (2001), hep-ex/0010026.

[73] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B517, 299 (2001), hep-ex/0107012.

[74] D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 94, 221801 (2005), hep-ex/0409040.

[75] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B639, 151 (2006), hep-ex/0511054.

[76] D0 Collaboration, V. M. Abazov et al., Phys. Rev. D76, 012003 (2007), hep-ex/0702025.

[77] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B658, 112 (2008), hep-ex/0608052.

[78] D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 100, 102002 (2008), 0712.0803.

[79] D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 101, 062001 (2008), 0802.2400.

[80] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B666, 435 (2008), 0804.1107.

[81] D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 101, 211801 (2008), 0807.3367.

[82] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B669, 278 (2008), 0808.1296.

[83] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B678, 45 (2009), 0903.1748.

[84] D0 Collaboration, V. M. Abazov et al., Phys. Rev. Lett. 103, 191803 (2009), 0906.4819.

[85] D0 Collaboration, V. M. Abazov et al., Phys. Lett. B682, 370 (2010), 0907.4286.

[86] D0 Collaboration, V. M. Abazov et al., (2010), 1002.4594.

[87] D0 Collaboration, V. M. Abazov et al., (2010), 1002.4917.

[88] D0 Collaboration, V. M. Abazov et al., (2010), 1006.0618.

[89] D0 Collaboration, V. M. Abazov et al., (2010), 1010.0262.

[90] D0 COLLABORATION Collaboration, V. M. Abazov et al., Phys.Lett. B704, 434 (2011),

1104.1986.

[91] T. Alexopoulos et al., Phys. Lett. B435, 453 (1998).

[92] ALICE Collaboration, K. Aamodt et al., Eur. Phys. J. C68, 89 (2010), 1004.3034.

– 33 –

[93] ALICE Collaboration, K. Aamodt et al., Eur.Phys.J. C68, 345 (2010), 1004.3514.

[94] ALICE Collaboration, K. Aamodt et al., Phys. Lett. B693, 53 (2010), 1007.0719.

[95] ALICE COLLABORATION Collaboration, K. Aamodt et al., Eur.Phys.J. C71, 1594 (2011),

1012.3257.

[96] ALICE Collaboration, K. Aamodt et al., Eur.Phys.J. C71, 1655 (2011), 1101.4110.

[97] ALICE COLLABORATION Collaboration, B. Abelev et al., Eur. Phys. J. C (2012),

1208.4968.

[98] ATLAS Collaboration, G. Aad et al., (2010), 1003.3124.

[99] ATLAS Collaboration, G. Aad et al., (2010), 1009.5908.

[100] T. A. Collaboration, (2010), 1012.4389.

[101] T. A. Collaboration, (2010), 1012.5382.

[102] ATLAS COLLABORATION Collaboration, G. Aad et al., Nature Commun. 2, 463 (2011),

1104.0326.

[103] ATLAS Collaboration, G. Aad et al., (2011), 1107.3311.

[104] THE ATLAS Collaboration, G. Aad et al., (2011), 1108.6308.

[105] ATLAS COLLABORATION Collaboration, G. Aad et al., (2011), 1109.0525.

[106] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Rev. D85, 012001 (2012),

1111.1297.

[107] ATLAS COLLABORATION Collaboration, (2011), 1111.2690.

[108] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Lett. B709, 341 (2012),

1111.5570.

[109] T. A. Collaboration, (2011), 1102.2696.

[110] ATLAS Collaboration, J. B. G. da Costa et al., (2011), 1102.5290.

[111] ATLAS Collaboration, G. Aad et al., (2011), 1103.6214.

[112] ATLAS COLLABORATION Collaboration, G. Aad et al., Nucl.Phys. B850, 387 (2011),

1104.3038.

[113] ATLAS Collaboration, G. Aad et al., Phys. Lett. B703, 428 (2011), 1106.4495.

[114] A. Collaboration, (2011), 1107.2092.

[115] ATLAS Collaboration, G. Aad et al., (2011), 1107.2381.

[116] ATLAS Collaboration, G. Aad et al., (2011), 1109.6572.

[117] ATLAS Collaboration, G. Aad et al., Phys. Rev. D85, 012006 (2012), 1109.6606.

[118] ATLAS COLLABORATION Collaboration, G. Aad et al., JHEP 1111, 099 (2011),

1110.2299.

[119] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Rev. D85, 052005 (2012),

1112.4432, Long author list - awaiting processing.

[120] ATLAS COLLABORATION Collaboration, G. Aad et al., (2011), 1112.6297.

– 34 –

[121] ATLAS COLLABORATION Collaboration, G. Aad et al., (2012), 1201.1276.

[122] ATLAS COLLABORATION Collaboration, G. Aad et al., (2012), 1203.0419.

[123] ATLAS Collaboration, G. Aad et al., (2012), 1203.3161.

[124] ATLAS COLLABORATION Collaboration, G. Aad et al., Eur.Phys.J. C72, 2043 (2012),

1203.5015.

[125] ATLAS COLLABORATION Collaboration, G. Aad et al., (2012), 1203.6193, 15 pages plus

author list (28 pages total), 11 figures, 8 tables, submitted to Physical Review D.

[126] ATLAS COLLABORATION Collaboration, G. Aad et al., (2012), 1204.5638, 5 pages plus

author list (18 pages total), 2 figures, 1 table, submitted to Physics Review Letters.

[127] ATLAS COLLABORATION Collaboration, G. Aad et al., Nucl.Phys. B864, 341 (2012),

1206.3122.

[128] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Rev. D86, 072006 (2012),

1206.5369.

[129] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Rev. D86, 072004 (2012),

1208.0563.

[130] ATLAS COLLABORATION Collaboration, G. Aad et al., (2012), 1208.6256.

[131] ATLAS COLLABORATION Collaboration, G. Aad et al., (2012), 1210.0441.

[132] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Lett. B709, 137 (2012),

1110.6189.

[133] ATLAS COLLABORATION Collaboration, G. Aad et al., Phys.Lett. B710, 519 (2012),

1111.4116.

[134] THE ATLAS COLLABORATION Collaboration, G. Aad et al., (2013), 1302.1415.

[135] ATLAS COLLABORATION Collaboration, G. Aad et al., JHEP 1307, 032 (2013),

1304.7098.

[136] CMS Collaboration, V. Khachatryan et al., JHEP 02, 041 (2010), 1002.0621.

[137] CMS Collaboration, V. Khachatryan et al., Phys. Rev. Lett. 105, 022002 (2010), 1005.3299.

[138] CMS COLLABORATION Collaboration, S. Chatrchyan et al., JHEP 1201, 052 (2012),

1111.5536.

[139] CMS Collaboration, V. Khachatryan et al., JHEP 01, 079 (2011), 1011.5531.

[140] CMS Collaboration, V. Khachatryan et al., JHEP 03, 090 (2011), 1101.3512.

[141] CMS COLLABORATION Collaboration, V. Khachatryan et al., Phys.Rev.Lett. 106, 122003

(2011), 1101.5029.

[142] CMS Collaboration, V. Khachatryan et al., Phys. Lett. B699, 48 (2011), 1102.0068.

[143] CMS Collaboration, V. Khachatryan et al., Phys. Rev. Lett. 106, 201804 (2011), 1102.2020.

[144] CMS Collaboration, V. Khachatryan et al., JHEP 03, 136 (2011), 1102.3194.

[145] CMS Collaboration, V. Khachatryan et al., JHEP 05, 064 (2011), 1102.4282.

[146] CMS COLLABORATION Collaboration, S. Chatrchyan et al., Phys. Rev. Lett. 107, 132001

(2011), 1106.0208, Long author list - awaiting processing.

– 35 –

[147] CMS COLLABORATION Collaboration, S. Chatrchyan et al., Phys.Lett. B702, 336 (2011),

1106.0647.

[148] CMS COLLABORATION Collaboration, S. Chatrchyan et al., (2011), 1107.0330.

[149] CMS Collaboration, S. Chatrchyan et al., JHEP 11, 148 (2011), 1110.0211.

[150] CMS COLLABORATION Collaboration, S. Chatrchyan et al., JHEP 1206, 036 (2012),

1202.0704.

[151] CMS COLLABORATION Collaboration, S. Chatrchyan et al., (2012), 1204.0696.

[152] CMS COLLABORATION Collaboration, S. Chatrchyan et al., (2012), 1204.1411.

[153] CMS COLLABORATION Collaboration, S. Chatrchyan et al., (2012), 1209.1805.

[154] CMS COLLABORATION Collaboration, S. Chatrchyan et al., (2012), 1210.6718.

[155] (2012).

[156] (2011).

[157] R. Aaij et al.

[158] LHCB Collaboration, R. Aaij et al., Phys. Lett. B693, 69 (2010), 1008.3105.

[159] LHCB COLLABORATION Collaboration, R. Aaij et al., JHEP 1108, 034 (2011), 1107.0882.

[160] LHCB COLLABORATION Collaboration, R. Aaij et al., Phys.Lett. B703, 267 (2011),

1107.3935.

[161] LHCB COLLABORATION Collaboration, R. Aaij et al., Eur.Phys.J. C72, 2168 (2012),

1206.5160.

[162] LHCF COLLABORATION Collaboration, O. Adriani et al., Phys.Rev. D86, 092001 (2012),

1205.4578.

[163] TOTEM Collaboration, G. Antchev et al., CERN Report No. CERN-PH-EP-2012-239.

TOTEM-2012-002, 2012 (unpublished).

[164] TOTEM COLLABORATION Collaboration, P. Aspell, Europhys.Lett. 98, 31002 (2012),

1205.4105.

[165] UA1 Collaboration, C. Albajar et al., Nucl. Phys. B335, 261 (1990).

[166] UA5 Collaboration, K. Alpgard et al., Phys. Lett. B112, 183 (1982).

[167] UA5 Collaboration, G. J. Alner et al., Z. Phys. C33, 1 (1986).

[168] UA5 Collaboration, G. J. Alner et al., Phys. Rept. 154, 247 (1987).

[169] UA5 Collaboration, R. E. Ansorge et al., Z. Phys. C37, 191 (1988).

[170] UA5 Collaboration, R. E. Ansorge et al., Z. Phys. C43, 357 (1989).

[171] H1 Collaboration, I. Abt et al., Z. Phys. C63, 377 (1994).

[172] H1 Collaboration, S. Aid et al., Phys. Lett. B356, 118 (1995), hep-ex/9506012.

[173] H1 Collaboration, C. Adloff et al., Eur. Phys. J. C12, 595 (2000), hep-ex/9907027.

[174] ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C23, 615 (2002), hep-ex/0112029.

[175] STAR Collaboration, J. Adams et al., Phys. Lett. B637, 161 (2006), nucl-ex/0601033.

– 36 –

[176] STAR Collaboration, B. I. Abelev et al., Phys. Rev. C75, 064901 (2007), nucl-ex/0607033.

[177] STAR Collaboration, B. I. Abelev et al., Phys. Rev. Lett. 97, 252001 (2006), hep-ex/0608030.

[178] STAR Collaboration, B. I. Abelev et al., Phys. Rev. C79, 034909 (2009), 0808.2041.

[179] C. Nattrass, Eur. Phys. J. C62, 265 (2009), 0809.5261.

[180] ARGUS COLLABORATION Collaboration, H. Albrecht et al., Z.Phys. C58, 191 (1993).

[181] ARGUS COLLABORATION Collaboration, H. Albrecht et al., Z.Phys. C58, 199 (1993).

[182] ARGUS COLLABORATION Collaboration, H. Albrecht et al., Z.Phys. C61, 1 (1994).

[183] BABAR COLLABORATION Collaboration, B. Aubert et al., Phys.Rev. D67, 032002 (2003),

hep-ex/0207097.

[184] BABAR COLLABORATION Collaboration, B. Aubert et al., Phys.Rev.Lett. 95, 142003

(2005), hep-ex/0504014.

[185] BABAR COLLABORATION Collaboration, B. Aubert et al., Phys.Rev. D75, 012003 (2007),

hep-ex/0609004.

[186] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 100, 011801 (2008), 0707.2981.

[187] BELLE COLLABORATION Collaboration, K. Abe et al., Phys.Rev. D64, 072001 (2001),

hep-ex/0103041.

[188] BELLE Collaboration, R. Seuster et al., Phys. Rev. D73, 032002 (2006), hep-ex/0506068.

[189] CLEO Collaboration, M. Artuso et al., Phys. Rev. D70, 112001 (2004), hep-ex/0402040.

[190] JADE Collaboration, P. A. Movilla Fernandez, O. Biebel, S. Bethke, S. Kluth, and

P. Pfeifenschneider, Eur. Phys. J. C1, 461 (1998), hep-ex/9708034.

[191] PARTICLE DATA GROUP Collaboration, C. Amsler et al., Phys. Lett. B667, 1 (2008).

[192] AMES-BOLOGNA-CERN-DORTMUND-HEIDELBERG-WARSAW Collaboration,

A. Breakstone et al., Phys. Rev. D30, 528 (1984).

[193] TASSO Collaboration, W. Braunschweig et al., Z. Phys. C47, 187 (1990).

[194] J. Bromley et al., (1995), ZEUS and H1 Collaborations.

– 37 –

