
Preprint typeset in JHEP style - HYPER VERSION

Rivet user manual

version 1.1.3

Andy Buckley

IPPP, Durham University, UK.
E-mail: andy.buckley@durham.ac.uk

Jonathan Butterworth

HEP Group, Dept. of Physics and Astronomy, UCL, London, UK.
E-mail: J.Butterworth@ucl.ac.uk

Leif Lönnblad

Theoretical Physics, Lund University, Sweden.
E-mail: lonnblad@thep.lu.se

Hendrik Hoeth

Theoretical Physics, Lund University, Sweden.
E-mail: hendrik.hoeth@cern.ch

James Monk

HEP Group, Dept. of Physics and Astronomy, UCL, London, UK.
E-mail: jmonk@hep.ucl.ac.uk

Frank Siegert

IPPP, Durham University, UK.
E-mail: frank.siegert@durham.ac.uk

Lars Sonnenschein

CERN, Genève 1206, Switzerland.
E-mail: sonne@cern.ch

Abstract: This is the manual and user guide for the Rivet system for the validation and
tuning of Monte Carlo event generators. As well as the core Rivet library, this manual
describes the usage of the rivet program and the AGILe generator interface library. The
depth and level of description is chosen for users of the system, starting with the basics of
using validation code written by others, and then covering sufficient details to write new
Rivet analyses and calculational components.

Keywords: Event generator, simulation, validation, tuning, QCD.

mailto:andy.buckley@durham.ac.uk
mailto:J.Butterworth@ucl.ac.uk
mailto:lonnblad@thep.lu.se
mailto:hendrik.hoeth@cern.ch
mailto:jmonk@hep.ucl.ac.uk
mailto:frank.siegert@durham.ac.uk
mailto:sonne@cern.ch
http://jhep.sissa.it/stdsearch

Contents

1. Introduction 3
1.1 Typographic conventions 4

I Getting started with Rivet 5

2. Quickstart 5
2.1 Getting generators for AGILe 7
2.2 Command completion 7

3. Running Rivet analyses 8
3.1 The FIFO idiom 8
3.2 Example rivet commands 8

4. Using analysis data 9
4.1 Histogram formats 9
4.2 Plotting and comparing data 10

II Standard Rivet analyses 11

5. LEP analyses 11
5.1 ALEPH 1991 S2435284 11
5.2 ALEPH 1996 S3486095 12
5.3 DELPHI 1995 S3137023 13
5.4 DELPHI 1996 S3430090 14
5.5 DELPHI 2002 069 CONF 603 15
5.6 DELPHI 2003 WUD 03 11 16
5.7 JADE OPAL 2000 S4300807 133GEV 17
5.8 JADE OPAL 2000 S4300807 161GEV 18
5.9 JADE OPAL 2000 S4300807 172GEV 19
5.10 JADE OPAL 2000 S4300807 183GEV 20
5.11 JADE OPAL 2000 S4300807 189GEV 21
5.12 JADE OPAL 2000 S4300807 91GEV 22
5.13 OPAL 1998 S3780481 23

6. Tevatron analyses 24
6.1 CDF 1990 S2089246 24
6.2 CDF 1994 S2952106 25
6.3 CDF 2000 S4155203 26
6.4 CDF 2001 S4751469 27

– 1 –

6.5 CDF 2002 S4796047 28
6.6 CDF 2004 S5839831 29
6.7 CDF 2005 S6217184 30
6.8 CDF 2006 S6653332 31
6.9 CDF 2007 S7057202 32
6.10 CDF 2008 LEADINGJETS 33
6.11 CDF 2008 NOTE 9351 34
6.12 CDF 2008 S7540469 35
6.13 CDF 2008 S7541902 36
6.14 CDF 2008 S7782535 37
6.15 CDF 2008 S7828950 38
6.16 CDF 2008 S8095620 39
6.17 CDF 2009 S8233977 40
6.18 D0 2001 S4674421 41
6.19 D0 2004 S5992206 42
6.20 D0 2006 S6438750 43
6.21 D0 2007 S7075677 44
6.22 D0 2008 S6879055 45
6.23 D0 2008 S7554427 46
6.24 D0 2008 S7662670 47
6.25 D0 2008 S7719523 48
6.26 D0 2008 S7837160 49
6.27 D0 2008 S7863608 50
6.28 D0 2009 S8202443 51

7. HERA analyses 52
7.1 H1 1994 S2919893 52
7.2 H1 1995 S3167097 53
7.3 H1 2000 S4129130 54
7.4 ZEUS 2001 S4815815 55

8. Monte Carlo analyses 56
8.1 MC LHC LEADINGJETS 56
8.2 MC TVT1960 ZJETS 57

9. Example analyses 58
9.1 EXAMPLE 58
9.2 EXAMPLETREE 59

10. Misc. analyses 60
10.1 JADE OPAL 2000 S4300807 35GEV 60
10.2 JADE OPAL 2000 S4300807 44GEV 61
10.3 PDG HADRON MULTIPLICITIES 62
10.4 PDG HADRON MULTIPLICITIES RATIOS 63

– 2 –

10.5 STAR 2006 S6870392 64
10.6 STAR 2008 S7993412 65

III How Rivet works 66

11. Projections 66
11.1 Projection caching 66
11.2 Using projection caching 67

12. Analyses 68
12.1 Writing a new analysis 68

12.1.1 Analysis constructor 69
12.2 Histogramming 70
12.3 Pluggable analyses 71

IV How Rivet really works 72

13. Projection caching 72
13.1 Writing a Projection comparison operator 72

V Appendices 73

A. Typical agile-runmc commands 73

VI Bibliography 74

1. Introduction

This manual is a users’ guide to using the Rivet generator validation system. Rivet is a C++
class library, which provides the infrastructure and calculational tools for simulation-level
analyses, enabling physicists to validate event generator models and tunings with minimal
effort and maximum portability. Rivet is designed to scale effectively to large numbers
of analyses for truly global validation, by transparent use of an automated result caching
system.

The Rivet ethos, if it may be expressed succinctly, is that user analysis code should be
extremely clean and easy to write — ideally it should be sufficiently self-explanatory to in
itself be a reference to the experimental analysis algorithm — without sacrificing power or
extensibility. The machinery to make this possible is intentionally hidden from the view of

– 3 –

all but the most prying users. Generator independence is explicitly required by virtue of all
analyses operating on the generic “HepMC” event record.

The simplest way to use Rivet is via the rivet command line tool, which analyses
textual HepMC event records as they are generated and produces output distributions in
a structured textual format. The input events are generated using the generator’s own
steering program, if one is provided; for generators which provide no default way to produce
HepMC output, the AGILe generator interface library, and in particular the agile-runmc

command which it provides, may be useful. For those who wish to embed their analyses in
some larger framework, Rivet can also be run programmatically on HepMC event objects
with no special executable being required.

Before we get started, a declaration of intent: this manual is intended to be a guide
to using Rivet, rather than a comprehensive and painstakingly maintained reference to
the application programming interface (API) of the Rivet library. For that purpose, you
will hopefully find the online generated documentation at http://projects.hepforge.

org/rivet to be sufficient. Similar API documentation is maintained for AGILe at http:
//projects.hepforge.org/agile.

1.1 Typographic conventions

As is normal in computer user manuals, the typography in this manual is used to indicate
whether we are describing source code elements, commands to be run in a terminal, the
output of a command etc.

The main such clue will be the use of typewriter-style text: this indicates the name
of a command or code element — class names, function names etc. Typewriter font is also
used for commands to be run in a terminal, but in this case it will be prefixed by a dollar
sign, as in $ echo ’’Hello’’ | cat. The output of such a command on the terminal will
be typeset in sans-serif font. When we are documenting a code feature in detail (which
is not the main point of this manual), we will use square brackets to indicate optional
arguments, and italic font between angle brackets to represent an argument name which
should be replaced by a value, e.g. Event::applyProjection(〈proj 〉).

Following the example of Donald Knuth in his books on TEX, in this document we will
indicate paragraphs of particular technicality or esoteric nature with a “dangerous bend”

Dangerous bendsign. These will typically describe internals of Rivet of which most people will be fortunate
enough to remain happily ignorant without adverse effects. However they may be of interest
to detail obsessives, the inordinately curious and Rivet hackers. You can certainly skip
them on a first reading. Similarly, you may see double bend signs — the same rules apply

Double bendfor these, but even more strongly.

– 4 –

Part I

Getting started with Rivet

As with many things, Rivet may be meaningfully approached at several distinct levels of
detail:

• The simplest, and we hope the most common, is to use the analyses which are
already in the library to study events from a variety of generators and tunes: this is
enormously valuable in itself and we encourage all manner of experimentalists and
phenomenologists alike to use Rivet in this mode.

• A more involved level of usage is to write your own Rivet analyses — this may be
done without affecting the installed standard analyses by use of a “plugin” system
(although we encourage users who develop analyses to submit them to the Rivet
developers for inclusion into a future release of the main package). This approach
requires some understanding of programming within Rivet but you don’t need to
know about exactly what the system is doing with the objects that you have defined.

• Finally, Rivet developers and people who want to do non-standard things with
their analyses will need to know something about the messy details of what Rivet’s
infrastructure is doing behind the scenes. But you’d probably rather be doing some
physics!

The current part of this manual is for the first sort of user, who wants to get on with
studying some observables with a generator or tune, or comparing several such models.
Since everyone will fall into this category at some point, our preent interest is to get you to
that all-important “physics plots” stage as quickly as possible. Analysis authors and Rivet
service-mechanics will find the more detailed information that they crave in Part III.

2. Quickstart

The point of this section is to get you up and running with Rivet as soon as possible.
Doing this by hand may be rather frustrating, as Rivet depends on several external libraries

— you’ll get bored downloading and building them by hand in the right order. Here we
recommend two much simpler ways — for the full details of how to build Rivet by hand,
please consult the Rivet Web page.

Ubuntu/Debian package archive A selection of HEP packages, including Rivet, are
maintained as Debian/Ubuntu Linux packages on the Launchpad PPA system: https:

//launchpad.net/~hep/+archive. This is the nicest option for Debian/Ubuntu, since not
only will it work more easily than anything else, but you will also automatically benefit
from bug fixes and version upgrades as they appear.

The PPA packages have been built as binaries for a variety of architectures, and the
package interdependencies are automatically known and used: all you need to do on a

– 5 –

Debian-type Linux system (Ubuntu included) is to add the Launchpad archive address to
your APT sources list and then request installation of the rivet package in the usual way.
See the Launchpad and system documentation for all the details.

Bootstrap script For those not using Debian/Ubuntu systems, we have written a
bootstrapping script which will download tarballs of Rivet, AGILe and the other required
libraries, expand them and build them in the right order with the correct build flags. This
is generally nicer than doing it all by hand, and virtually essential if you want to use the
existing versions of FastJet, HepMC, generator libraries, and so on from CERN AFS: there
are issues with these versions which the script works around, which you won’t find easy to
do yourself.

You can get the bootstrap script from the following Web address: http://svn.

hepforge.org/rivet/bootstrap/rivet-bootstrap

To run the script, we recommend that you choose a personal installation directory.
Personally, I make a ∼/local directory for this purpose, to avoid polluting my home
directory with a lot of files. If you already use a directory of the same name, you might
want to use a separate one, say ∼/rivetlocal, such that if you need to delete everything
in the installation area you can do so without difficulties. You’ll need to add 〈localdir〉/bin
to your $PATH environment variable and 〈localdir〉/lib to your $LD_LIBRARY_PATH.

Now, change directory to your build area (you may also want to make this, e.g.
∼/build), and download the script:
$ wget http://svn.hepforge.org/rivet/bootstrap/rivet-bootstrap

Now run it, specifying the install area as the argument:
$ chmod +x rivet-bootstrap

$./rivet-bootstrap 〈localdir〉
If you are running on a system where the CERN AFS area is mounted as /afs/cern.ch,

then the bootstrap script will attempt to use the pre-built HepMC, LHAPDF, FastJet and
GSL libraries from the LCG software area. Either way, you’ll see a large amount of build
output, and finally a message telling you what changes to your environment variables will
make the system useable.

You now have a working, installed copy of the Rivet and AGILe libraries, and the
rivet and agile-runmc executables: respectively these are the command-line frontend to
the Rivet analysis library, and a convenient steering command for generators which do not
provide their own main program with HepMC output. To test that they work as expected,
set the environment variables as instructed, if you’ve not already done so, run this:
$ rivet --help

This should print a quick-reference user guide for the rivet command to the terminal.
Similarly, for agile-runmc,
$ agile-runmc --help

$ agile-runmc --list-gens

$ agile-runmc --beams=pp:14TeV FPythia:6413

which should respectively print the help, list the available generators and make 10 LHC-type

– 6 –

events using the Fortran Pythia 6.4.13 generator. You’re on your way! If no generators are
listed, you probaby need to install a local Genser-type generator repository: see section 2.1.

In this manual, because of its convenience, we will use agile-runmc as our canonical
way of producing a stream of HepMC event data; if your interest is in running a generator
like Sherpa or Herwig++ which provides its own native way to make HepMC output, or
a generator like Cascade or PHOJET which is not currently supported by AGILe, then
substitute the appropriate command in what follows. We’ll discuss using these commands
in detail in section 3.

2.1 Getting generators for AGILe

One last thing before continuing, though: the generators themselves. Again, if you’re
running on a system with the CERN LCG AFS area mounted, then rivetgun will attempt
to automatically use the generators packaged by the LCG Genser team.

Otherwise, you’ll have to build your own mirror of the LCG generators. This process is
not standardised at the moment (this will hopefully change), so we’ve provided a script,
agile-genser-bootstrap:
$ wget http://svn.hepforge.org/agile/genser/agile-genser-bootstrap

Now make yourself a Genser installation directory, e.g. $HOME/genser, and cd into it.
Then run the agile-genser-bootstrap script, and wait for it all to build. Finally, set
the $AGILE_GEN_PATH path variable to contain the 〈genserDir〉 directory: you should now
have a few generators to play with.

If you are interested in using a generator not currently supported by AGILe, which
does not output HepMC events in its native state, then please contact the authors and
hopefully we can help.

2.2 Command completion

A final installation point worth considering is using the supplied bash-shell programmable
completion setup for the rivet and agile-runmc commands. Despite being cosmetic and
semi-trivial, programmable completion makes using rivet positively pleasant, especially
since you no longer need to remember the somewhat cryptic analysis names1!

To use programmable completion, source the appropriate files from the install location:
$. 〈localdir〉/share/Rivet/rivet-completion
$. 〈localdir〉/share/AGILe/agile-completion
If there is already a 〈localdir〉/etc/bash_completion.d directory in your install path,
Rivet and AGILe’s installation scripts will install extra copies into that location, since
automatically sourcing all completion files in such a path is quite standard.

Apologies to {C,k,z,. . . }-shell users, but this feature is currently only available for the
bash shell. Anyone who feels like supplying fixes or additions for their favourite shell is
very welcome to get in touch with the developers.

1Standard Rivet analyses have names which, as well as the publication date and experiment name,

incorporate the 8-digit Spires ID code.

– 7 –

3. Running Rivet analyses

The rivet executable is the easiest way to use Rivet, and will be our example throughout
this manual. This command reads HepMC events in the standard ASCII format, either
from file or from a text stream.

3.1 The FIFO idiom

Since you rarely want to store simulated HepMC events and they are computationally cheap
to produce (at least when compared to the remainder of experiment simulation chains),
we recommend using a Unix named pipe (or “FIFO” — first-in, first-out) to stream the
events. While this may seem unusual at first, it is just a nice way of “pretending” that we
are writing to and reading from a file, without actually involving any slow disk access or
building of huge files: a 1M event LHC run would occupy ∼ 60GB on disk, and typically it
takes twice as long to make and analyse the events when the filesystem is involved! Here is
an example:
$ mkfifo fifo.hepmc

$ agile-runmc Pythia:6418 -o fifo.hepmc &

$ rivet -a EXAMPLE fifo.hepmc

Note that the generator process (agile-runmc in this case) is backgrounded before rivet

is run. This is absolutely necessary, since the buffer size of a pipe in Linux is only 64K —
about the space required to store one LHC event in HepMC’s textual event format. The
generator process will have to wait until the buffer is cleared, e.g. by being read by rivet,
before computing or writing any more events. By running the generator and rivet at the
same time, this flow control through the buffer is invisible to the user.

Notably, mkfifo will not work if applied to a directory mounted via the AFS distributed
filesystem, as widely used in HEP. This is not a big problem: just make your FIFO object
somewhere not mounted via AFS, e.g. /tmp. There is no performance penalty, as the
filesystem object is not written to during the streaming process.

In the following command examples, we will assume that a generator has been set up
to write to the fifo.hepmc FIFO, and just list the rivet command that reads from that
location. Some typical agile-runmc commands are listed in appendix A.

3.2 Example rivet commands

• Getting help: rivet --help will print a (hopefully) helpful list of options which
may be used with the rivet command, as well as other information such as environ-
ment variables which may affect the run.

• Choosing analyses: rivet --list-analyses will list the available analyses, in-
cluding both those in the Rivet distribution and any plugins which are found at
runtime. rivet --show-analysis 〈patt〉 will show a lot of details about any analy-
ses whose name match the 〈patt〉 regular expression pattern — simple bits of analysis
name are a perfectly valid subset of this. For example, rivet --show-analysis

– 8 –

CDF_200 exploits the standard Rivet analysis naming scheme to show details of all
available CDF experiment analyses published in the “noughties.”

• Running particular analyses: rivet -a DELPHI_1996_S3430090 in.hepmc will
run the Rivet DELPHI_1996_S3430090 [1] analysis on the events in the in.hepmc data
file. This analysis is the one originally used for the Delphi automated “Professor”
generator tuning. If the first event in the data file does not have appropriate beams,
the analysis will be disabled; since there is only one analysis in this case, the command
will exit immediately with a warning.

• Using all analyses: rivet -n 50000 -A - will read up to 50k events from stan-
dard input (specified by the special “-” input filename) and analyse them with all the
Rivet library analyses. As above, incompatible analyses (based on beam particle IDs),
will be removed before the main analysis run begins.

• Histogramming: rivet in.hepmc -H foo will read all the events in the in.hepmc
file. The -H switch is used to specify that the output histogram file will be named
foo.aida. By default the output file is called Rivet.aida.

• Fine-grained logging: rivet in.hepmc -A -l Rivet.Analysis=DEBUG \
-l Rivet.Projection=DEBUG -l Rivet.Projection.FinalState=TRACE \
-l RivetGun=WARN -l NEvt=WARN analyse events as before, but will print different
status information as the run progresses. Hierarchical logging control is possible
down to the level of individual analyses and projections as shown above; this is
useful for debugging without getting overloaded with debug information from all the
components at once. The default level is “info”, which lies between “debug” and
“warning”; the “trace” level is for very low level information, and probably isn’t
needed by normal users.

4. Using analysis data

In this section, we summarise how to use the data files which Rivet produces for plotting,
validation and tuning.

4.1 Histogram formats

Rivet currently produces output histogram data in the AIDA XML format. Most people
aren’t familiar with AIDA (and we recommend that you remain that way!), and it will
disappear entirely from Rivet in version 1.2.0. You will probably wish to cast the AIDA
files to a different format for plotting, and for this we supply several scripts.

Conversion to ROOT Your knee-jerk reaction is probably to want to know how to
plot your Rivet histograms in ROOT. Don’t worry; you can recover from this unfortunate
behaviour after only a few months of therapy. For unrepentant ROOT junkies, Rivet installs
an aida2root script, which converts the AIDA records to a .root file full of ROOT TGraph

– 9 –

s. One word of warning: a bug in ROOT means that TGraph s do not render properly from
file because the axis is not drawn by default. To display the plots correctly in ROOT you
will need to pass the "AP" drawing option string to either the TGraph::Draw() method, or
in the options box in the TBrowser GUI interface.

Conversion to “flat format” Most of our histogramming is based around the YODA
“flat” plain text format, which can easily be read (and written) by hand. We provide a script
called aida2flat to do this conversion. Run aida2flat -h to get usage instructions; in
particular the Gnuplot and “split output” options are useful for further visualisation. Aside
from anything else, this is useful for simply checking the contents of an AIDA file, with
aida2flat Rivet.aida | less.

We get asked a lot about why we don’t use ROOT internally: aside from a
general unhappiness about the design and quality of the data objects in ROOT,
the monolithic nature of the system makes it a big dependency for a system as

small as Rivet. While not an issue for experimentalists, most theorists and generator
developers do not use ROOT and we preferred to embed the AIDA system, which in its
LWH implementation requires no external package. The replacement for AIDA will be
another lightweight system rather than ROOT, with an emphasis on friendly, intuitive data
object design, and correct handling of sample merging statistics for all data objects.

4.2 Plotting and comparing data

Rivet comes with two commands — compare-histos and make-plots — for comparing
and plotting data files. These commands produce nice comparison plots of publication
quality from the YODA format text files, e.g.:
$ compare-plots path/to/CDF_2001_S4751469.aida py.aida:’Pythia 6.418’ \
hw.aida:’Herwig++ 2.3.0’

This command will have compared the three named data files (ending in .aida),
identified which plots are available in them, and combined the MC and reference plots
appropriately into a set of plot data files ending with .dat. The strings after the ”:” for
the MC files are specifying ID strings to appear in the plot legends. You can also run
compare-plots to just compare MC–MC data files. More options are described by running
compare-histos --help.

Incidentally, the reference files for each Rivet analysis are to be found in the installed
Rivet shared data directory, 〈installdir〉/share/Rivet. You can find the location of this by
using the rivet-config command:
$ rivet-config --datadir

You can now plot the created data files using the make-plots command:
$ make-plots --pdf *.dat

The --pdf flag makes the output plots in PDF format: by default the output is in PostScript
(.ps), and flags for conversion to EPS and PNG are also available.

– 10 –

Part II

Standard Rivet analyses

In this section we describe the standard experimental analyses included with the Rivet
library. To maintain synchronisation with the code, these descriptions are generated
automatically from the metadata in the analysis objects themselves. This is currently rather
sparse, hence the briefness of the descriptions shown here. Richer metadata will be added
to the code soon!

5. LEP analyses

5.1 ALEPH 1991 S2435284

Hadronic Z decay charged multiplicity measurement
Experiment: ALEPH (LEP 1)
Spires ID: 2435284
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

References:

• Phys. Lett. B, 273, 181 (1991)

Run details:

• Hadronic Z decay events generated on the Z pole (
√
s = 91.2 GeV)

The charged particle multiplicity distribution of hadronic Z decays, as measured on the peak
of the Z resonance using the ALEPH detector at LEP. The unfolding procedure was model
independent, and the distribution was found to have a mean of 20.85+-0.24, Comparison
with lower energy data supports the KNO scaling hypothesis. The shape of the multiplicity
distribution is well described by a log-normal distribution, as predicted from a cascading
model for multi-particle production.

– 11 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+2435284
mailto:andy.buckley@durham.ac.uk

5.2 ALEPH 1996 S3486095

Studies of QCD with the ALEPH detector.
Experiment: ALEPH (LEP 1)
Spires ID: 3486095
Status: VALIDATED
Authors:

• Holger Schulz 〈 holger.schulz@physik.hu-berlin.de 〉;

References:

• Phys. Rept., 294, 1–165 (1998)

Run details:

• Hadronic Z decay events generated on the Z pole (
√
s = 91.2 GeV)

Summary paper of QCD results as measured by ALEPH at LEP 1. The publication includes
various event shape variables, multiplicities (identified particles and inclusive), and particle
spectra.

– 12 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+3486095
mailto:holger.schulz@physik.hu-berlin.de

5.3 DELPHI 1995 S3137023

Strange baryon production in Z hadronic decays at Delphi
Experiment: DELPHI (LEP 1)
Spires ID: 3137023
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Z. Phys. C, 67, 543–554 (1995)

Run details:

• Hadronic Z decay events generated on the Z pole (
√
s = 91.2 GeV)

Measurement of the Ξ− and Σ + (1385)/Σ − (1385) scaled momentum distributions by
DELPHI at LEP 1. The paper also has the production cross-sections of these particles, but
that’s not implemented in Rivet.

– 13 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+3137023
mailto:hendrik.hoeth@cern.ch

5.4 DELPHI 1996 S3430090

Delphi MC tuning on event shapes and identified particles.
Experiment: DELPHI (LEP 1)
Spires ID: 3430090
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Z.Phys.C73:11-60,1996

• DOI: 10.1007/s002880050295

Run details:

• Energy: 91.2 GeV

• Event type is e+ e- Z production with hadronic decays only

Event shape and charged particle inclusive distributions measured using 750000 decays of Z
bosons to hadrons from the DELPHI detector at LEP. This data, combined with identified
particle distributions from all LEP experiments, was used for tuning of shower-hadronisation
event generators by the original PROFESSOR method.
This is a critical analysis for MC event generator tuning of final state radiation and both
flavour and kinematic aspects of hadronisation models.

– 14 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+3430090
mailto:andy.buckley@durham.ac.uk
mailto:hendrik.hoeth@cern.ch
http://dx.doi.org/10.1007/s002880050295

5.5 DELPHI 2002 069 CONF 603

Study of the b-quark fragmentation function at LEP 1
Experiment: DELPHI (LEP 1)
Spires ID: NONE
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• DELPHI note 2002-069-CONF-603 (ICHEP 2002)

Run details:

• Hadronic Z decay events generated on the Z pole (
√
s = 91.2 GeV)

Measurement of the b-quark fragmentation function by DELPHI using 1994 LEP 1 data.
The fragmentation function for both weakly decaying and primary b-quarks has been
determined in a model independent way. Nevertheless the authors trust f(x Bweak) more
than f(x Bprim).

– 15 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:hendrik.hoeth@cern.ch

5.6 DELPHI 2003 WUD 03 11

4-jet angular distributions at LEP
Experiment: DELPHI (LEP 1)
Spires ID: NONE
Status: UNVALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Diploma thesis WUD-03-11, University of Wuppertal

Run details:

• Hadronic Z decay events generated on the Z pole (
√
s = 91.2 GeV)

The 4-jet angular distributions (Bengtsson-Zerwas,K”orner-Schierholz-Willrodt, Nachtmann-
Reiter, and α 34) have been measured with DELPHI at LEP 1 using Jade and Durham
cluster algorithms.

– 16 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:hendrik.hoeth@cern.ch

5.7 JADE OPAL 2000 S4300807 133GEV

Jet rates in e+e- at OPAL [133 GeV].
Experiment: JADE OPAL (LEP Run 2)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 133 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 133.

– 17 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

5.8 JADE OPAL 2000 S4300807 161GEV

Jet rates in e+e- at OPAL [161 GeV].
Experiment: JADE OPAL (LEP Run 2)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 161 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 161.

– 18 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

5.9 JADE OPAL 2000 S4300807 172GEV

Jet rates in e+e- at OPAL [172 GeV].
Experiment: JADE OPAL (LEP Run 2)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 172 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 172.

– 19 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

5.10 JADE OPAL 2000 S4300807 183GEV

Jet rates in e+e- at OPAL [183 GeV].
Experiment: JADE OPAL (LEP Run 2)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 183 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 183.

– 20 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

5.11 JADE OPAL 2000 S4300807 189GEV

Jet rates in e+e- at OPAL [189 GeV].
Experiment: JADE OPAL (LEP Run 2)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 189 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 189.

– 21 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

5.12 JADE OPAL 2000 S4300807 91GEV

Jet rates in e+e- at OPAL [91 GeV].
Experiment: JADE OPAL (LEP Run I)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 91.2 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 91.2.

– 22 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

5.13 OPAL 1998 S3780481

Measurements of flavor dependent fragmentation functions in Z0 -→ q anti-q
events.
Experiment: OPAL (LEP 1)
Spires ID: 3780481
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Eur. Phys. J, C7, 369–381 (1999)

• hep-ex/9807004

Run details:

• Hadronic Z decay events generated on the Z pole (
√
s = 91.2 GeV)

Measurement of scaled momentum distributions and total charged multiplicities in flavour
tagged events at LEP 1. OPAL measured these observables in uds-, c-, and b-events
separately. An inclusive measurement is also included.

– 23 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+3780481
mailto:hendrik.hoeth@cern.ch

6. Tevatron analyses

6.1 CDF 1990 S2089246

CDF pseudorapidity distributions at 630 and 1800 GeV
Experiment: CDF (Tevatron Run 0)
Spires ID: 2089246
Status: UNVALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@cern.ch 〉;

References:

• Phys.Rev.D41:2330,1990

• DOI: 10.1103/PhysRevD.41.2330

Run details:

• Energy:
√
s = 630 and 1800 GeV

• Event type: generic QCD events

• |η| < 3.5

Pseudorapidity distributions based on the CDF 630 and 1800 GeV runs from 1987. All
data is detector corrected. The data confirms the UA5 measurement of a N/η rise with
energy faster than ln

√
s, and as such this analysis is important for constraining the energy

evolution of minimum bias and underlying event characteristics in MC simulations.

– 24 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+2089246
mailto:andy.buckley@cern.ch
http://dx.doi.org/10.1103/PhysRevD.41.2330

6.2 CDF 1994 S2952106

CDF Run I color coherence analysis.
Experiment: CDF (Tevatron Run 1)
Spires ID: 2952106
Status: UNVALIDATED
Authors:

• Lars Sonnenschein 〈Lars.Sonnenschein@cern.ch 〉;

References:

• Phys.Rev.D50,5562,1994

• DOI: 10.1103/PhysRevD.50.5562

Run details:

• Energy:
√
s = 1800 GeV

• Event type: generic QCD events

• Cut on primary vertex z position: z(PV) ¡ 60 cm

• pmin
⊥ : leading jet = 100 GeV; and 3rd jet = 10 GeV

• Max. pseudorapidity range of 2nd and 3rd jets: |eta| < 0.7

• Azimuthal angle requirement: ∆φ < π/18 (transverse back-to-backness)

• MET cut requirement: mET/
√

Scalar E T < 6.0GeV

CDF Run I color coherence analysis. Events with ≥ 3 jets are selected and Et distributions
of the three highest-p⊥ jets are obtained. The plotted quantities are the ∆R between the
2nd and 3rd leading jets in the p⊥ and pseudorapidity of the 3rd jet, and α = dη/dφ, where
dη is the pseudorapidity difference between the 2nd and 3rd jets and dφ is their azimuthal
angle difference.
Since the data has not been detector-corrected, a bin by bin correction is applied, based on
the distributions with ideal and CDF simulation as given in the publication.

– 25 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+2952106
mailto:Lars.Sonnenschein@cern.ch
http://dx.doi.org/10.1103/PhysRevD.50.5562

6.3 CDF 2000 S4155203

Z p⊥ measurement in CDF Z → e+ e- events
Experiment: CDF (Tevatron Run 1)
Spires ID: 4155203
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Phys.Rev.Lett.84:845-850,2000

• arXiv: hep-ex/0001021

• DOI: 10.1103/PhysRevLett.84.845

Run details:

• Tevatron Run I: p pbar collisions at 1800 GeV

• Z Drell-Yan with e+ e- decay mode (for Z and γ∗) only.

Measurement of transverse momentum and total cross section of e+e- pairs in the Z-boson
region of 66 GeV/c2 < m ee < 116 GeV/c2 from pbar-p collisions at

√
s = 1.8 TeV, with

the Tevatron CDF detector.
The Z p⊥, in a fully-factorised picture, is generated by the momentum balance against
initial state radiation (ISR) and the primordial/intrinsic p⊥ of the Z’s parent partons in
the incoming hadrons. The Z p⊥ is important in generator tuning to fix the interplay of
ISR and multi-parton interactions (MPI) ingenerating ‘underlying event’ activity.
This analysis is subject to ambiguities in the experimental Z p⊥ definition,since the Rivet
implementation reconstructs the Z momentum from the dileptonpair with finite cones for
photon brem summation, rather than YFS unfoldingor a non-portable direct access to the
Z in the event record.

– 26 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4155203
mailto:hendrik.hoeth@cern.ch
http://arxiv.org/abs/hep-ex/0001021
http://dx.doi.org/10.1103/PhysRevLett.84.845

6.4 CDF 2001 S4751469

Field & Stuart Run I underlying event analysis.
Experiment: CDF (Tevatron Run 1)
Spires ID: 4751469
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

References:

• Phys.Rev.D65:092002,2002

• FNAL-PUB 01/211-E

Run details:

• CDF Run I conditions: ppbar QCD interactions at 1800 GeV. Leading jet bins
from 0–49 GeV: usually can be filled with a single generator run without kinematic
sub-samples, with ∼ 1M events.

The original CDF underlying event analysis, based on decomposing each event into a
transverse structure with “toward”, “away” and “transverse” regions defined relative to the
azimuthal direction of the leading jet in the event. Since the toward region is by definition
dominated by the hard process, as is the away region by momentum balance in the matrix
element, the transverse region is most sensitive to multi-parton interactions. The transverse
regions occupy |φ| ∈ [60◦, 120◦] for |η| < 1. The p⊥ ranges for the leading jet are divided
experimentally into the ‘min-bias’ sample from 0–20 GeV, and the ‘JET20’ sample from
18–49 GeV.

– 27 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4751469
mailto:andy.buckley@durham.ac.uk

6.5 CDF 2002 S4796047

CDF Run 1 charged multiplicity measurement
Experiment: CDF (Tevatron Run 1)
Spires ID: 4796047
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Phys.Rev.D65:072005,2002

• DOI: 10.1103/PhysRevD.65.072005

Run details:

• Energy:
√
s = 630 and 1800 GeV

• Event type: generic QCD events

• TODO: MORE?

A study of pp collisions at
√
s = 1800 and 630 GeV collected using a minimum bias trigger in

which the data set is divided into two classes corresponding to ‘soft’ and ‘hard’ interactions.
For each subsample, the analysis includes measurements of the multiplicity, transverse
momentum (p⊥) spectra, and the average p⊥ and event-by-event p⊥ dispersion as a function
of multiplicity. A comparison of results shows distinct differences in the behavior of the two
samples as a function of the center of mass energy. The properties of the soft sample are
invariant as a function of c.m. energy.

– 28 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4796047
mailto:hendrik.hoeth@cern.ch
http://dx.doi.org/10.1103/PhysRevD.65.072005

6.6 CDF 2004 S5839831

Transverse cone and ’Swiss cheese’ underlying event studies
Experiment: CDF (Tevatron Run 2)
Spires ID: 5839831
Status: UNVALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

References:

• Phys. Rev. D70, 072002 (2004)

• arXiv: hep-ex/0404004

Run details:

• Two different beam energies:
√
s = 630 & 1800 GeV

• Event type: generic QCD events

• Several pmin
⊥ cutoffs are probably required to fill the profile histograms, e.g.

* 0 (min bias), 30, 90, 150 GeV at 1800 GeV; and * 0 (min bias), 20, 90, 150 GeV
at 630 GeV

This analysis studies the underlying event via transverse cones of R = 0.7 at 90 degrees in
φ relative to the leading (highest E) jet, at

√
s = 630 and 1800 GeV. This is similar to the

2001 CDF UE analysis, except that cones, rather than the whole central η range are used.
The transverse cones are categorised as TransMIN and TransMAX on an event-by-event
basis, to give greater sensitivity to the UE component.
’Swiss Cheese’ distributions, where cones around the leading n jets are excluded from the
distributions, are also included for n = 2, 3.
This analysis is useful for constraining the energy evolution of the underlying event, since it
performs the same analyses at two distinct CoM energies.
WARNING: this analysis is not currently considered valid for MC tuning and validation
studies due to ambiguities in the paper and non-reproducability of the MC plots shown in
the paper. The fit to data is sufficiently poor that this analysis skews the overall goodness
of fit in tuning studies, and has to be excluded. If you can help to improve this analysis
and make it usable for validation studies, please get in touch!

– 29 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+5839831
mailto:andy.buckley@durham.ac.uk
http://arxiv.org/abs/hep-ex/0404004

6.7 CDF 2005 S6217184

CDF Run II jet shape analysis
Experiment: CDF (Tevatron Run 2)
Spires ID: 6217184
Status: VALIDATED
Authors:

• Lars Sonnenschein 〈Lars.Sonnenschein@cern.ch 〉;

• Andy Buckley 〈 andy.buckley@cern.ch 〉;

References:

• Phys.Rev.D71:112002,2005

• DOI: 10.1103/PhysRevD.71.112002

• arXiv: hep-ex/0505013

Run details:

• Energy:
√
s = 1960 GeV

• Event type: generic QCD events.

• η ∈ [−2, 2] cut used on final state.

• Jet axes must have |y| ∈ [0.1, 0.7].

• Jet shape r ∈ [0.0, 0.7]

• Jet pmin
⊥ in plots is 37 GeV/c: choose generator min p⊥ somewhere well below this.

Measurement of jet shapes in inclusive jet production in p pbar collisions at center-of-mass
energy

√
s = 1.96 TeV. The data cover jet transverse momenta from 37–380 GeV and

absolute jet rapidities in the range 0.1–0.7.

– 30 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+6217184
mailto:Lars.Sonnenschein@cern.ch
mailto:andy.buckley@cern.ch
http://dx.doi.org/10.1103/PhysRevD.71.112002
http://arxiv.org/abs/hep-ex/0505013

6.8 CDF 2006 S6653332

p⊥ and eta distributions of jets in Z + jet production
Experiment: CDF (Tevatron Run 2)
Spires ID: 6653332
Status: VALIDATED
Authors:

• Lars Sonnenschein 〈Lars.Sonnenschein@cern.ch 〉;

References:

• Phys.Rev.D.74:032008,2006

• DOI: 10.1103/PhysRevD.74.032008

• arXiv: hep-ex/0605099v2

Run details:

• Energy:
√
s = 1960 GeV

• Event type: Z + jets events

• Jets min p⊥ cut: p⊥ jet > 20 GeV

• Leptons min p⊥ cut: p⊥ jet > 10 GeV

Measurement of the b jet cross section in events with Z boson in p pbar collisions at
center-of-mass energy

√
s = 1.96 TeV. The data cover jet transverse momenta above 20

GeV and jet pseudo-rapidities in the range -1.5 to 1.5. Z bosons are identified in their
electron and muon decay modes in an invariant dilepton mass range between 66 and 116
GeV.

– 31 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+6653332
mailto:Lars.Sonnenschein@cern.ch
http://dx.doi.org/10.1103/PhysRevD.74.032008
http://arxiv.org/abs/hep-ex/0605099v2

6.9 CDF 2007 S7057202

CDF Run II inclusive jet cross-section using the kT algorithm
Experiment: CDF (Tevatron Run 2)
Spires ID: 7057202
Status: UNVALIDATED
Authors:

• David Voong

• James Monk 〈 jmonk@hep.ucl.ac.uk 〉;

References:

• Phys.Rev.D75:092006,2007

• Erratum-ibid.D75:119901,2007

• FNAL-PUB 07/026-E

• hep-ex/0701051

Run details:

• Standard Tevatron Run II: p-pbar collisions at 1960 GeV. Jet p⊥ bins from 54 GeV
to 700 GeV. Jet rapidity < |2.1|.

CDF Run II measurement of inclusive jet cross sections at a p-pbar collision energy of
1.96 TeV. Jets are reconstructed in the central part of the detector (|y| < 2.1) using the kT
algorithm with an R parameter of 0.7. The minimum jet p⊥ considered is 54 GeV, with a
maximum around 700 GeV.
The inclusive jet p⊥ is plotted in bins of rapidity |y| < 0.1, 0.1 < |y| < 0.7, 0.7 < |y| < 1.1,
1.1 < |y| < 1.6 and 1.6 < |y| < 2.1.

– 32 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7057202
mailto:jmonk@hep.ucl.ac.uk

6.10 CDF 2008 LEADINGJETS

CDF Run 2 underlying event in leading jet events
Experiment: CDF (Tevatron Run 2)
Spires ID: NONE
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

•

Run details:

• Tevatron Run 2: ppbar QCD interactions at 1960 GeV. Particles with cτ > 10 mm
should be set stable. Several p ⊥ min cutoffs are probably required to fill the profile
histograms: * p ⊥ min = 0 (min bias), 10, 20, 50, 100, 150 GeV * The corresponding
merging points are at p T = 0, 30, 50, 80, 130, 180 GeV

Rick Field’s measurement of the underlying event in leading jet events. If the leading jet of
the event is within |η| < 2, the event is accepted and “toward”, “away” and “transverse”
regions are defined in the same way as in the original (2001) CDF underlying event analysis.
The leading jet defines the φ direction of the toward region. The transverse regions are
most sensitive to the underlying event.

– 33 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:hendrik.hoeth@cern.ch

6.11 CDF 2008 NOTE 9351

CDF Run 2 underlying event in Drell-Yan
Experiment: CDF (Tevatron Run 2)
Spires ID: NONE
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• CDF public note 9351

Run details:

• Tevatron Run 2: ppbar collisions at 1960 GeV.

• Drell-Yan events with Z/γ∗ → ee and Z/γ∗ → µµ.

• A mass cut m ll > 70 GeV can be applied on generator level.

• Particles with cτ > 10 mm should be set stable.

Deepak Kar’s and Rick Field’s measurement of the underlying event in Drell-Yan events. Z
→ ee and Z → µµ events are selected using a Z mass window cut between 70 and 110 GeV.
“Toward”, “away” and “transverse” regions are defined in the same way as in the original
(2001) CDF underlying event analysis. The reconstructed Z defines the φ direction of the
toward region. The leptons are ignored after the Z has been reconstructed. Thus the region
most sensitive to the underlying event is the toward region (the recoil jet is boosted into
the away region).

– 34 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:hendrik.hoeth@cern.ch

6.12 CDF 2008 S7540469

Measurement of differential Z/gamma* + jet + X cross sections
Experiment: CDF (Tevatron Run 2)
Spires ID: 7540469
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Phys.Rev.Lett.100:102001,2008

• arXiv: 0711.3717

Run details:

• Tevatron Run 2 conditions: ppbar → e+ e- + jets at 1960 GeV.

• Needs mass cut on lepton pair to avoid photon singularity: min. range 66 < m ee <

116

Cross sections as a function of jet transverse momentum in 1 and 2 jet events, and jet
multiplicity in ppbar collisions at

√
s = 1.96 TeV, based on an integrated luminosity of

1.7 fb-1. The measurements cover the rapidity region |y jet| < 2.1 and the transverse
momentum range p⊥ jet > 30 GeV/c.

– 35 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7540469
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/0711.3717

6.13 CDF 2008 S7541902

Jet p⊥ distributions for 4 jet multiplicity bins as well as the jet multiplicity
distribution in W + jets events.
Experiment: CDF (Tevatron Run 2)
Spires ID: 7541902
Status: UNVALIDATED
Authors:

• Ben Cooper 〈b.d.cooper@qmul.ac.uk 〉;

• Emily Nurse 〈nurse@hep.ucl.ac.uk 〉;

References:

• arXiv: 0711.4044

• Phys.Rev.D77:011108,2008

Run details:

• Requires the process pp̄→W → eν, additional hard jets will also have to be included
to get a good description. The LO process in Herwig is set with IPROC=1451.

Measurement of the cross section for W boson production in association with jets in pp̄

collisions at
√
s = 1.96 TeV. The analysis uses 320 pb−1 of data collected with the CDF II

detector. W bosons are identified in their eν decay channel and jets are reconstructed using
an R < 0.4 cone algorithm. For each W+ ≥ n-jet sample (where n = 1–4) a measurement
of dσ(pp̄→W+ ≥ n jet)/dE T (nth-jet) × BR(W → eν) is made, where dE T (nth-jet) is
the Et of the nth-highest Et jet above 20 GeV. A measurement of the total cross section,
σ(pp̄→W+ ≥ n-jet) × BR(W → eν) with E T (nth− jet) > 25 GeV is also made. Both
measurements are made for jets with |η| < 2 and for a limited reigon of the W → eν decay
phase space: |ηe| < 1.1, p Te > 20 GeV, p Tν > 30 GeV and M T > 20 GeV. The cross
sections are corrected for all detector effects and can be directly compared to particle level
W + jet(s) predictions. These measurements can be used to test and tune QCD predictions
for the number of jets in and kinematics of W + jets events.

– 36 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7541902
mailto:b.d.cooper@qmul.ac.uk
mailto:nurse@hep.ucl.ac.uk
http://arxiv.org/abs/0711.4044

6.14 CDF 2008 S7782535

CDF Run II b-jet shape paper
Experiment: CDF (Tevatron Run 2)
Spires ID: 7782535
Status: UNVALIDATED
Authors:

• Alison Lister 〈 alister@fnal.gov 〉;

• Emily Nurse 〈nurse@hep.ucl.ac.uk 〉;

References:

• arXiv: 0806.1699

• Phys.Rev.D78:072005,2008

Run details:

• Requires 2→ 2 QCD scattering processes. The minimum jet Et is 52 GeV, so a cut
on kinematic pmin

⊥ may be required for good statistics.

A measurement of the shapes of b-jets using 300 pb−1 of data obtained with CDF II in pp̄
collisions at

√
s = 1.96 TeV. The measured quantity is the average integrated jet shape, which

is computed over an ensemble of jets. This quantity is expressed as Ψ(r/R) = 〈 p T (0→r)
p T (0→R)〉,

where p⊥ (0→r) is the scalar sum of the transverse momenta of all objects inside a sub-cone
of radius r around the jet axis. The integrated shapes are by definition normalized such that
Ψ(r/R = 1) = 1. The measurement is done in bins of jet p⊥ in the range 52 to 300 GeV/c.
The jets have |η| < 0.7. The b-jets are expected to be broader than inclusive jets.Moreover,
b-jets containing a single b-quark are expected to be narrower than those containing a b
bbar pair from gluon splitting.

– 37 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7782535
mailto:alister@fnal.gov
mailto:nurse@hep.ucl.ac.uk
http://arxiv.org/abs/0806.1699

6.15 CDF 2008 S7828950

CDF Run II inclusive jet cross-section using the Midpoint algorithm
Experiment: CDF (Tevatron Run 2)
Spires ID: 7828950
Status: UNVALIDATED
Authors:

• Craig Group 〈 group@fnal.gov 〉;

References:

• arXiv: 0807.2204

• Phys.Rev.D78:052006,2008

Run details:

• Requires 2→ 2 QCD scattering processes. The minimum jet Et is 62 GeV, so a cut
on kinematic pmin

⊥ may be required for good statistics.

Measurement of the inclusive jet cross section in pp̄ collisions at
√
s = 1.96 TeV as a

function of jet Et, for Et > 62 GeV. The data is collected by the CDF II detector and has
an integrated luminosity of 1.13 fb−1. The measurement was made using the cone-based
Midpoint jet clustering algorithm in rapidity bins within |y| < 2.1. This measurement can
be used to provide increased precision in PDFs at high parton momentum fraction x.

– 38 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7828950
mailto:group@fnal.gov
http://arxiv.org/abs/0807.2204

6.16 CDF 2008 S8095620

CDF Run II Z+b-jet cross section paper, 2 fb-1
Experiment: CDF (Tevatron Run 2)
Spires ID: 8095620
Status: UNVALIDATED
Authors:

• Emily Nurse 〈nurse@hep.ucl.ac.uk 〉;

References:

• arXiv: 0812.4458

Run details:

• Requires the process pp̄→ Z → ``, where ` is e or µ. Additional hard jets will also
have to be included to get a good description.

Measurement of the b-jet production cross section for events containing a Z boson produced
in pp̄ collisions at

√
s = 1.96 TeV, using data corresponding to an integrated luminosity

of 2 fb−1 collected by the CDF II detector at the Tevatron. Z bosons are selected in the
electron and muon decay modes. Jets are considered with transverse energy E T > 20 GeV
and pseudorapidity |η| < 1.5. The ratio of the integrated Z + b-jet cross section to the
inclusive Z production cross section is measured differentially in jet E T , jet η, Z-boson
transverse momentum, number of jets, and number of b-jets. The first two measurements
have an entry for each b-jet in the event, the last three measurements have one entry per
event.

– 39 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+8095620
mailto:nurse@hep.ucl.ac.uk
http://arxiv.org/abs/0812.4458

6.17 CDF 2009 S8233977

CDF Run 2 min bias cross-section analysis
Experiment: CDF (Tevatron Run 2)
Spires ID: 8233977
Status: PARTIALLY VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• CDF public note 9337

• hep-ex/0904.1098

Run details:

• Tevatron Run 2: ppbar QCD interactions at 1960 GeV.

• Particles with cτ > 10 mm should be set stable.

Niccolo Moggi’s minbias analysis. Minimum bias events are used to measure the average
track p⊥ vs charged multiplicity, a track p⊥ distribution and an inclusive

∑
E T distribution.

WARNING: Only average track p⊥ vs charged multiplicity is validated!

– 40 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+8233977
mailto:hendrik.hoeth@cern.ch

6.18 D0 2001 S4674421

Tevatron Run I differential W/Z boson cross-section analysis
Experiment: D0 (Tevatron Run 1)
Spires ID: 4674421
Status: VALIDATED
Authors:

• Lars Sonnenschein 〈Lars.Sonnenschein@cern.ch 〉;

References:

• Phys.Lett.B517:299-308,2001

• DOI: 10.1016/S0370-2693(01)01020-6

• arXiv: hep-ex/0107012v2

Run details:

• Energy:
√
s = 1800 GeV

• Event type: W/Z events with decays to first generation leptons

Measurement of differential W/Z boson cross section and ratio in p pbar collisions at center-
of-mass energy

√
s = 1.8 TeV. The data cover electrons and neutrinos in a pseudo-rapidity

range of -2.5 to 2.5.

– 41 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4674421
mailto:Lars.Sonnenschein@cern.ch
http://dx.doi.org/10.1016/S0370-2693(01)01020-6
http://arxiv.org/abs/hep-ex/0107012v2

6.19 D0 2004 S5992206

Run II jet azimuthal decorrelation analysis
Experiment: D0 (Tevatron Run 2)
Spires ID: 5992206
Status: VALIDATED
Authors:

• Lars Sonnenschein 〈 lars.sonnenschein@cern.ch 〉;

References:

• Phys. Rev. Lett., 94, 221801 (2005)

• arXiv: hep-ex/0409040

Run details:

• Tevatron Run 2: ppbar QCD interactions at 1960 GeV.

Correlations in the azimuthal angle between the two largest p⊥ jets have been measured
using the D0 detector in ppbar collisions at 1960 GeV. The analysis is based on an inclusive
dijet event sample in the central rapidity region. The correlations are determined for four
different p⊥ intervals.

– 42 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+5992206
mailto:lars.sonnenschein@cern.ch
http://arxiv.org/abs/hep-ex/0409040

6.20 D0 2006 S6438750

Inclusive isolated photon cross-section, differential in p⊥ (gamma)
Experiment: D0 (Tevatron Run 2)
Spires ID: 6438750
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Gavin Hesketh 〈 gavin.hesketh@cern.ch 〉;

References:

• Phys.Lett.B639:151-158,2006, Erratum-ibid.B658:285-289,2008

• DOI: 10.1016/j.physletb.2006.04.048

• arXiv: hep-ex/0511054

Run details:

• Requires gamma + jet (q,qbar,g) hard processes

* for Pythia 6, MSEL=10 for with MSUB indices 14, 18, 29, 114, 115 enabled

• Lowest p⊥ bin is at 23 GeV: a p⊥ min cut at 10–15 GeV may be required to get
good statistics.

Measurement of differential cross section for inclusive production of isolated photons in p
pbar collisions at

√
s = 1.96 TeV with the D0 detector at the Fermilab Tevatron collider.

The photons span transverse momenta 23–300 GeV and have pseudorapidity |η| < 0.9.
Isolated direct photons are probes of pQCD via the annihilation (q qbar → gamma g)
and quark-gluon Compton scattering (q g → gamma q) processes, the latter of which is
also sensitive to the gluon PDF. The initial state radiation / resummation formalisms are
sensitive to the resulting photon p⊥ spectrum

– 43 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+6438750
mailto:andy.buckley@durham.ac.uk
mailto:gavin.hesketh@cern.ch
http://dx.doi.org/10.1016/j.physletb.2006.04.048
http://arxiv.org/abs/hep-ex/0511054

6.21 D0 2007 S7075677

Z/gamma* + X cross-section shape, differential in y(Z)
Experiment: D0 (Tevatron Run 2)
Spires ID: 7075677
Status: UNCLEAR: Photons in Z reconstruction?
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Gavin Hesketh 〈 ghesketh@fnal.gov 〉;

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Phys.Rev.D76:012003,2007

• arXiv: hep-ex/0702025

Run details:

• Tevatron Run 2 conditions:

• ppbar → e+ e- + jets at 1960 GeV.

• Needs mass cut on lepton pair to avoid photon singularity: min. range 71 < m ee <

111

Cross sections as a function of boson rapidity ppbar collisions at sqrts = 1.96 TeV, based
on an integrated luminosity of 0.4 fb-1.

– 44 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7075677
mailto:andy.buckley@durham.ac.uk
mailto:ghesketh@fnal.gov
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0702025

6.22 D0 2008 S6879055

Measurement of the ratio sigma(Z/gamma* + n jets)/sigma(Z/gamma*)
Experiment: D0 (Tevatron Run 2)
Spires ID: 6879055
Status: VALIDATED
Authors:

• Giulio Lenzi

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• hep-ex/0608052

Run details:

• Tevatron Run 2 conditions:

• ppbar → e+ e- + jets at 1960 GeV

• Needs mass cut on lepton pair to avoid photon singularity: min. range 75 < m ee <

105

Cross sections as a function of p⊥ of the three leading jets and n-jet cross section ratios in
ppbar collisions at sqrts = 1.96 TeV, based on an integrated luminosity of 0.4 fb-1.

– 45 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+6879055
mailto:frank.siegert@durham.ac.uk

6.23 D0 2008 S7554427

Z/gamma* + X cross-section shape, differential in p⊥ (Z)
Experiment: D0 (Tevatron Run 2)
Spires ID: 7554427
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• arXiv: 0712.0803

Run details:

• Tevatron Run 2 conditions:

• ppbar → e+ e- + jets at 1960 GeV.

• Needs mass cut on lepton pair to avoid photon singularity: m in range 40 < m ee < 200
GeV

Cross sections as a function of p⊥ of the vector boson inclusive and in forward region
(|y| > 2, p⊥ < 30 GeV)in ppbar collisions at

√
s = 1.96 TeV, based on an integrated

luminosity of 0.98 fb−1.

– 46 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7554427
mailto:andy.buckley@durham.ac.uk
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/0712.0803

6.24 D0 2008 S7662670

Measurement of D0 Run II differential jet cross sections
Experiment: D0 (Tevatron Run 2)
Spires ID: 7662670
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Gavin Hesketh 〈 gavin.hesketh@cern.ch 〉;

References:

• Phys.Rev.Lett.101:062001,2008

• DOI: 10.1103/PhysRevLett.101.062001

• arXiv: 0802.2400v3

Run details:

• Energy:
√
s = 1960 GeV

• Event type: QCD events

• pmin
⊥ cut may be necessary: lowest jet p⊥ bin is at 50 GeV

Measurement of the inclusive jet cross section in p pbar collisions at center-of-mass energy√
s = 1.96 TeV. The data cover jet transverse momenta from 50–600 GeV and jet rapidities

in the range -2.4 to 2.4.

– 47 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7662670
mailto:andy.buckley@durham.ac.uk
mailto:gavin.hesketh@cern.ch
http://dx.doi.org/10.1103/PhysRevLett.101.062001
http://arxiv.org/abs/0802.2400v3

6.25 D0 2008 S7719523

Isolated gamma + jet cross-sections, differential in p⊥ (gamma) for various y-
bins
Experiment: D0 (Tevatron Run 2)
Spires ID: 7719523
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Gavin Hesketh 〈 gavin.hesketh@cern.ch 〉;

References:

• Phys.Lett.B666:435-445,2008

• DOI: 10.1016/j.physletb.2008.06.076

• arXiv: 0804.1107v2

Run details:

• Produce only gamma + jet (q,qbar,g) hard processes

* for Pythia 6: MSEL=10, and MSUB indices 14, 29 & 115 enabled

• Lowest bin edge at 30 GeV: kinematic pmin
⊥ cut may be required for good statistics.

The process p pbar → photon + jet + X as studied by the D0 detector at the Fermilab
Tevatron collider at center-of-mass energy

√
s = 1.96 TeV. Photons are reconstructed in

the central rapidity region |y γ| < 1.0 with transverse momenta in the range 30–400 GeV,
while jets are reconstructed in either the central |y jet| < 0.8 or forward 1.5 < |y jet| < 2.5
rapidity intervals with p⊥ jet > 15 GeV. The differential cross section d3σ/dp⊥ γdy γdy jet
is measured as a function of p⊥ γ in four regions, differing by the relative orientations of
the photon and the jet.
MC predictions have trouble with simultaneously describing the measured normalization
and p⊥ γ dependence of the cross section in any of the four measured regions.

– 48 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7719523
mailto:andy.buckley@durham.ac.uk
mailto:gavin.hesketh@cern.ch
http://dx.doi.org/10.1016/j.physletb.2008.06.076
http://arxiv.org/abs/0804.1107v2

6.26 D0 2008 S7837160

Measurement of W charge asymmetry from D0 Run II
Experiment: D0 (Tevatron Run 2)
Spires ID: 7837160
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Gavin Hesketh 〈 gavin.hesketh@cern.ch 〉;

References:

• Phys.Rev.Lett.101:211801,2008

• DOI: 10.1103/PhysRevLett.101.211801

• arXiv: 0807.3367v1

Run details:

• Event type: W production with decay to e nu e only

* for Pythia 6: MSEL = 12, MDME(206,1) = 1

• Energy: 1.96 TeV

Measurement of the electron charge asymmetry in p pbar → W + X → e nu e + X events
at a center of mass energy of 1.96 TeV. The asymmetry is measured as a function of the
electron transverse momentum and pseudorapidity in the interval (-3.2, 3.2).
This data is sensitive to proton parton distribution functions due to the valence asymmetry
in the incoming quarks which produce the W. Initial state radiation should also affect the
p⊥ distribution.

– 49 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7837160
mailto:andy.buckley@durham.ac.uk
mailto:gavin.hesketh@cern.ch
http://dx.doi.org/10.1103/PhysRevLett.101.211801
http://arxiv.org/abs/0807.3367v1

6.27 D0 2008 S7863608

Measurement of differential Z/gamma* + jet + X cross sections
Experiment: D0 (Tevatron Run 2)
Spires ID: 7863608
Status: VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

• Gavin Hesketh 〈 gavin.hesketh@fnal.gov 〉;

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• arXiv: 0808.1296

Run details:

• Tevatron Run 2 conditions:

• ppbar → mu+ mu- + jets at 1960 GeV

• Needs mass cut on lepton pair to avoid photon singularity: min. range 65 < m Z < 115

Cross sections as a function of p⊥ and rapidity of the boson and p⊥ and rapidity of the
leading jet in ppbar collisions at

√
s = 1.96 TeV, based on an integrated luminosity of

1.0 fb− 1.

– 50 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7863608
mailto:andy.buckley@durham.ac.uk
mailto:gavin.hesketh@fnal.gov
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/0808.1296

6.28 D0 2009 S8202443

Z/gamma* + jet + X cross sections differential in p⊥ (jet 1,2,3)
Experiment: D0 (Tevatron Run 2)
Spires ID: 8202443
Status: UNVALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• arXiv: 0903.1748

Run details:

• Tevatron Run 2 conditions:

• ppbar → e+ e- + jets at 1960 GeV

• Needs mass cut on lepton pair to avoid photon singularity: min. range 65 < m Z < 115

Cross sections as a function of p⊥ of the three leading jets in Z/γ∗(→ e+e−) + jet + X
production in ppbar collisions at

√
s = 1.96 TeV, based on an integrated luminosity of

1.0fb−1.

– 51 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+8202443
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/0903.1748

7. HERA analyses

7.1 H1 1994 S2919893

H1 energy flow and charged particle spectra in DIS
Experiment: H1 (HERA)
Spires ID: 2919893
Status: VALIDATED
Authors:

• Peter Richardson 〈peter.richardson@durham.ac.uk 〉;

References:

• Z.Phys.C63:377-390,1994

• DOI: 10.1007/BF01580319

Run details:

• Event type: e- p / e+ p deep inelastic scattering

• HERA beam conditions: 820 GeV protons colliding with 26.7 GeV electrons

Global properties of the hadronic final state in deep inelastic scattering events at HERA
are investigated. The data are corrected for detector effects. Energy flows in both the
laboratory frame and the hadronic centre of mass system, and energy-energy correlations in
the laboratory frame are presented.
Historically, the Ariadne colour dipole model provided the only satisfactory description of
this data, hence making it a useful ’target’ analysis for MC shower models.

– 52 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+2919893
mailto:peter.richardson@durham.ac.uk
http://dx.doi.org/10.1007/BF01580319

7.2 H1 1995 S3167097

Transverse energy and forward jet production in the low x regime at H1
Experiment: H1 (HERA Run I)
Spires ID: 3167097
Status: UNVALIDATED
Authors:

• Leif Lonnblad 〈 leif.lonnblad@thep.lu.se 〉;

References:

• Phys.Lett.B356:118,1995

• hep-ex/9506012

Run details:

• HERA beam conditions: 820 GeV protons colliding with 26.7 GeV electrons

• DIS events with an outgoing electron energy > 12 GeV

• 5 GeV2 < Q2 < 100 GeV2, 10−4 < x < 10−2.

DIS events at low x may be sensitive to new QCD dynamics such as BFKL or CCFM
radiation. In particular, BFKL is expected to produce more radiation at high transverse
energy in the rapidity span between the proton remnant and the struck quark jet. Performing
a transverse energy sum in bins of x and η may distinguish between DGLAP and BFKL
evolution.

– 53 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+3167097
mailto:leif.lonnblad@thep.lu.se

7.3 H1 2000 S4129130

H1 energy flow in DIS
Experiment: H1 (HERA)
Spires ID: 4129130
Status: VALIDATED
Authors:

• Peter Richardson 〈peter.richardson@durham.ac.uk 〉;

References:

• Eur.Phys.J.C12:595-607,2000

• DOI: 10.1007/s100520000287

• arXiv: hep-ex/9907027v1

Run details:

• Event type: e+ p deep inelastic scattering

• Energy: p at 820 GeV, e+ at 27.5 GeV →
√
s = 300 GeV

Measurements of transverse energy flow for neutral current deep-inelastic scattering events
produced in positron-proton collisions at HERA. The kinematic range covers squared
momentum transfers Q2 from 3.2 to 2200 GeV2; the Bjorken scaling variable x from 8x10-5
to 0.11 and the hadronic mass W from 66 to 233 GeV. The transverse energy flow is
measured in the hadronic centre of mass frame and is studied as a function of Q2, x, W and
pseudorapidity. The behaviour of the mean transverse energy in the central pseudorapidity
region and an interval corresponding to the photon fragmentation region are analysed as a
function of Q2 and W.
This analysis is useful for exploring the effect of photon PDFs and for tuning models of
parton evolution and treatment of fragmentation and the proton remnant in DIS.

– 54 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4129130
mailto:peter.richardson@durham.ac.uk
http://dx.doi.org/10.1007/s100520000287
http://arxiv.org/abs/hep-ex/9907027v1

7.4 ZEUS 2001 S4815815

Dijet photoproduction analysis
Experiment: ZEUS (HERA Run I)
Spires ID: 4815815
Status: UNVALIDATED
Authors:

• Jon Butterworth 〈 jmb@hep.ucl.ac.uk 〉;

References:

• Eur.Phys.J.C23:615,2002

• DESY 01/220

• hep-ex/0112029

Run details:

• HERA beam conditions: 820 GeV protons colliding with 27.5 GeV positrons

• Direct and resolved photoproduction of di-jets

• Leading jet p⊥ ¿ 14 GeV, second jet p⊥ ¿ 11 GeV

• Jet pseudorapidity −1 < η < 2.4

ZEUS photoproduction of jets from proton-positron collisions at beam energies of 820 GeV
on 27.5 GeV. Photoproduction can either be direct, in which case the photon interacts
directly with the parton, or resolved, in which case the photon acts as a source of quarks and
gluons. A photon-proton centre of mass energy of between 134 GeV and 227 GeV is probed,
with values of xP, the fractional momentum of the partons inside the proton, predominantly
in the region between 0.01 and 0.1. The fractional momentum of the partons from the
photon, xγ, is in the region 0.1 to 1. Jets are reconstructed in the range −1 < |η| < 2.4
using the kT algorithm with an R parameter of 1.0. The minimum p⊥ of the leading jet
should be greater then 14 GeV, and at least one other jet must have p⊥ ¿11 GeV.

– 55 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4815815
mailto:jmb@hep.ucl.ac.uk

8. Monte Carlo analyses

8.1 MC LHC LEADINGJETS

Underlying event in leading jet events, extended to LHC
Experiment: NONE (LHC)
Spires ID: NONE
Status: NOT TO BE VALIDATED
Authors:

• Andy Buckley 〈 andy.buckley@cern.ch 〉;

References:

•

Run details:

• LHC: pp QCD interactions at 0.9, 10 or 14 TeV.Particles with cτ > 10 mm should be
set stable.Several p ⊥ min cutoffs are probably required to fill the profile histograms.

Rick Field’s measurement of the underlying event in leading jet events, extended to the LHC.
As usual, the leading jet of the defines an azimuthal toward/transverse/away decomposition,
in this case the event is accepted within |η| < 2, as in the CDF 2008 version of the analysis.
Since this isn’t the Tevatron, I’ve chosen to use k ⊥ rather than midpoint jets.

– 56 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:andy.buckley@cern.ch

8.2 MC TVT1960 ZJETS

Monte Carlo validation observables for Z[e+ e-] + jets production at Tevatron
Run II
Experiment: MC (Tevatron Run 2)
Spires ID: NONE
Status: NOT TO BE VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

No references listed Run details:

• Tevatron Run 2 conditions:

• ppbar → e+ e- + jets at 1960 GeV. * Needs mass cut on lepton pair to avoid photon
singularity: min. range 66 < m ee < 116 GeV

Available observables
* Z mass
* p⊥ of jet 1-4
* jet multiplicity
* Delta eta (Z, jet1)
* Delta R (jet2, jet3)
* Differential jet rates 0→1, 1→2, 2→3, 3→4
* Integrated 0-4 jet rates

– 57 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:frank.siegert@durham.ac.uk

9. Example analyses

9.1 EXAMPLE

A demo to show aspects of writing a Rivet analysis
Experiment: NONE (NONE)
Spires ID: NONE
Status: EXAMPLE
Authors:

• Andy Buckley 〈 andy.buckley@durham.ac.uk 〉;

No references listed Run details:

• All event types will be accepted.

This analysis is a demonstration of the Rivet analysis structure and functionality: booking
histograms; the initialisation, analysis and finalisation phases; and a simple loop over event
particles. It has no physical meaning, but can be used as a simple pedagogical template for
writing real analyses.

– 58 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:andy.buckley@durham.ac.uk

9.2 EXAMPLETREE

Demonstrate filling a ROOT tree from a kT jets analysis
Experiment: NONE (NONE)
Spires ID: NONE
Status: EXAMPLE
Authors:

• Jon Butterworth 〈 jmb@hep.ucl.ac.uk 〉;

No references listed Run details:

• All event types will be accepted.

This analysis is a demonstration of how Rivet can be used to produce ROOT data trees
rather than Rivet’s own histograms. We don’t recommend this, since analyses written this
way will not be accepted for inclusion into the Rivet library and hence will not contribute to
standard MC validation and tuning studies. However, it may be useful for nascent private
MC analyses if you are a ROOT fan.
Note that this example analysis does some things such as accessing parton level information,
which are unphysical and also may be generator dependent. You should not use this method
in your own analyses if you expect the results to be meaningfully comparable to data!

– 59 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+NONE
mailto:jmb@hep.ucl.ac.uk

10. Misc. analyses

10.1 JADE OPAL 2000 S4300807 35GEV

Jet rates in e+e- at JADE [35 GeV].
Experiment: JADE OPAL (DESY PETRA)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 35 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 35.

– 60 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

10.2 JADE OPAL 2000 S4300807 44GEV

Jet rates in e+e- at JADE [44 GeV].
Experiment: JADE OPAL (DESY PETRA)
Spires ID: 4300807
Status: VALIDATED
Authors:

• Frank Siegert 〈 frank.siegert@durham.ac.uk 〉;

References:

• Eur.Phys.J.C17:19-51,2000

• arXiv: hep-ex/0001055

Run details:

• e+ e- collisions:

• e+ e- → jet jet (+ jets) at 44 GeV. * no cuts needed

Differential and integrated jet rates for Durham and JADE jet algorithms at
√
s = 44.

– 61 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+4300807
mailto:frank.siegert@durham.ac.uk
http://arxiv.org/abs/hep-ex/0001055

10.3 PDG HADRON MULTIPLICITIES

Hadron multiplicities in hadronic e+e- events
Experiment: PDG (various)
Spires ID: 7857373
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Phys. Lett. B, 667, 1 (2008)

Run details:

• Hadronic events in e+ e− collisions

Hadron multiplicities in hadronic e+e- events, taken from Review of Particle Properties
2008, table 40.1, page 355.
Average hadron multiplicities per hadronic e+ e− annihilation event at

√
s ≈ 10, 29–35,

91, and 130–200 GeV. The numbers are averages from various experiments. Correlations of
the systematic uncertainties were considered for the calculation of the averages.

– 62 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7857373
mailto:hendrik.hoeth@cern.ch

10.4 PDG HADRON MULTIPLICITIES RATIOS

Ratios (w.r.t. pi+/pi-) of hadron multiplicities in hadronic e+e- events
Experiment: PDG (various)
Spires ID: 7857373
Status: VALIDATED
Authors:

• Holger Schulz 〈 holger.schulz@physik.hu-berlin.de 〉;

References:

• Phys. Lett. B, 667, 1 (2008)

Run details:

• Hadronic events in e+ e− collisions

Ratios (w.r.t. pi+/pi-) of hadron multiplicities in hadronic e+e- events, taken from Review
of Particle Properties 2008, table 40.1, page 355.
Average hadron multiplicities per hadronic e+ e− annihilation event at

√
s ≈ 10, 29–35,

91, and 130–200 GeV,normalised to the pion multiplicity. The numbers are averages from
various experiments. Correlations of the systematic uncertainties were considered for the
calculation of the averages.

– 63 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7857373
mailto:holger.schulz@physik.hu-berlin.de

10.5 STAR 2006 S6870392

Inclusive jet cross-section in pp at 200 GeV
Experiment: STAR (RHIC pp 200 GeV)
Spires ID: 6870392
Status: VALIDATED
Authors:

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• Phys. Rev. Lett. 97, 252001

• hep-ex/0608030

Run details:

• RHIC pp 200 GeV run conditions:

• pp at 200 GeV

Inclusive jet cross section as a function of p⊥ in pp collisions at
√
s = 200 GeV, measured

by the STAR experiment at RHIC.

– 64 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+6870392
mailto:hendrik.hoeth@cern.ch

10.6 STAR 2008 S7993412

Di-hadron correlations in d-Au at 200 GeV
Experiment: STAR (RHIC d-Au 200 GeV)
Spires ID: 7993412
Status: UNVALIDATED
Authors:

• Christine Nattrass 〈 christine.nattrass@yale.edu 〉;

• Hendrik Hoeth 〈hendrik.hoeth@cern.ch 〉;

References:

• arXiv: 0809.5261

Run details:

• RHIC d-Au 200 GeV run conditions:

• d-Au at 200 GeV (use pp Monte Carlo! See description.)

Correlation in η and φ between the charged hadron with the highest p⊥ (“trigger particle”)
and the other charged hadrons in the event (“associated particles”). The data was collected
in d-Au collisions at 200 GeV. Nevertheless, it is very proton-proton like and can therefore
be compared to pp Monte Carlo (not for tuning, but for qualitative studies).

– 65 –

http://www.slac.stanford.edu/spires/find/hep/www?rawcmd=key+7993412
mailto:christine.nattrass@yale.edu
mailto:hendrik.hoeth@cern.ch
http://arxiv.org/abs/0809.5261

Part III

How Rivet works

Hopefully by now you’ve run Rivet a few times and got the hang of the command line
interface and viewing the resulting analysis data files. Maybe you’ve got some ideas of
analyses that you would like to see in Rivet’s library. If so, then you’ll need to know a little
about Rivet’s internal workings before you can start coding: with any luck by the end of
this section that won’t seem particularly intimidating.

The core objects in Rivet are “projections” and “analyses”. Hopefully “analyses” isn’t
a surprise — that’s just the collection of routines that will make histograms to compare with
reference data, and the only things that might differ there from experieces with HZTool
are the new histogramming system and the fact that we’ve used some object orientation
concepts to make life a bit easier. The meaning of “projections”, as applied to event analysis,
will probably be less obvious. We’ll discuss them now.

11. Projections

The name “projection” is meant to evoke thoughts of projection operators, low-dimensional
slices/views of high-dimensional spaces, and other things that might appeal to physicists who
view the world through quantum-tinted lenses. A more mundane, but equally applicable,
name would be “observable calculators”, but since that’s a long name, the things they
return aren’t necessarily observable, and they all inherit from the Projection base class,
we’ll stick to that name. It doesn’t take long to get used to using the name as a synonym
for “calculator”, without being intimidated by ideas that they might be some sort of
high-powered deep magic. 90% of them is simple and self-explanatory, as a peek under the
bonnet of e.g. the all-important FinalState projection will reveal.

Projections can be relatively simple things like event shapes (i.e. scalar, vector or
tensor quantities), or arbitrarily complex things like lossy or selective views of the event
final state. Most users will see them attached to analyses by declarations in each analysis’
constructor, but they can also be recursively “nested” inside other projections2 (provided
there are no infinite loops in the nesting chain.) Calling a complex projection in an analysis
may actually transparently execute many projections on each event.

11.1 Projection caching

Aside from semantic issues of how the class design assigns the process of analysing events,
projections are important computationally because they live in a framework which auto-
matically stores (“caches”) their results between events. This is a crucial feature for the
long-term scalability of Rivet, as the previous experience with HZTool was that HERA

2Provided there are no dependency loops in the projection chains! Strictly, only acyclic graphs of

projection dependencies are valid, but there is currently no code in Rivet that will attempt to verify this

restriction.

– 66 –

validation code ran very slowly due to repeated calculation of the same k⊥ clustering
algorithm (at that time notorious for scaling as the 3rd power of the number of particles.)

A concrete example may help in understanding how this works. Let’s say we have two
analyses which have the same run conditions, i.e. incoming beam types, beam energies,
etc. Each also uses the thrust event shape measure to define a set of basis vectors for their
analysis. For each event that gets passed to Rivet, whichever analysis gets called first will
immediately (although maybe indirectly) call a FinalState projection to get a list of stable,
physical particles (filtering out the intermediate and book-keeping entries in the HepMC
event record). That FS projection is then “attached” to the event. Next, the first analysis
will call a Thrust projection which internally uses the same final state projection to define
the momentum vectors used in calculating the thrust. Once finished, the thrust projection
will also be attached to the event.

So far, projections have offered no benefits. However, when the second analysis runs it
will similarly try to apply its final state and thrust projections to the event. Rather than
repeat the calculations, Rivet’s infrastructure will detect that an equivalent calculation
has already been run and will just return references to the already-run projections. Since
projections can also contain and use other projections, this model allows some substantial
computational savings, without the analysis author even needing to be particularly aware
of what is going on.

Observant readers may have noticed a problem with all this projection caching cleverness:
what if the final states aren’t defined the same way? One might provide charged final state
particles only, or the acceptances (defined in rapidity range and a IR p⊥ cutoff) might differ.
Rivet handles this by making each projection provide a comparison operator which is used
to decide whether the cached version is acceptable or if the calculation must be re-run with
different settings. Because projections can be nested, applying a top-level projection to an
event can spark off a cascade of comparisons, calculations and cache accesses, making use
of existing results wherever possible.

11.2 Using projection caching

So far this is all theory — how does one actually use projections in Rivet? First, you should
understand that projections, while semantically stored within each other, are actually
all registered with a central ProjectionHandler object.3 The reason for this central
registration is to ensure that all projections’ lifespans are managed in a consistent way,
and to protect projection and analysis authors from some technical subtleties in how C++
polymorphism works.

Inside the constructor of a Projection or Analysis class, you must call the addProjection
function. This takes two arguments, the projection to be registered (by const reference),
and a name. The name is local to the parent object, so you need not worry about name
clashes between objects. A very important point is that the passed Projection is not the
one that is actually centrally registered — that distinction belongs to a newly created heap

3As of version 1.1 onwards — previously, they were stored as class members inside other Projection s

and Analysis classes.

– 67 –

object which is created within the addProjection method by means of the overloaded
Projection::clone() method. Hence it is completely safe — and recommended — to use
only local (stack) objects in Projection and Analysis constructors.

At this point, if you have rightly bought into C++ ideas like super-strong type-safety,
this proliferation of dynamic casting may worry you: the compiler can’t possibly
check if a projection of the requested name has been registered, nor whether the
downcast to the requested concrete type is legal. These are very legitimate concerns!

In truth, we’d like to have this level of extra safety but in the past, when projections were held
as members of ProjectionApplier classes rather than in the central ProjectionHandler
repository, the benefits of the strong typing were outweighed by more serious and subtle bugs
relating to projection lifetime and object “slicing”. At least when the current approach goes
wrong it will throw an unmissable runtime error every time that you run it (until it’s fixed,
of course!) rather than silently do the wrong thing, as was the previous behaviour.
Our problems here are a microcosm of the perpetual language battle between strict and
dynamic typing, runtime versus compile time errors. In practice, this manifests itself as a
trade-off between the benefits of static type safety and the inconvenience of the type-system
gymnastics that it engenders. We take some comfort from the number of very good programs
have been and are still written in dynamically typed, interpreted languages like Python,
where virtually all error checking (barring first-scan parsing errors) must be done at runtime.
By pushing some checking to the domain of runtime errors, Rivet’s code is (we believe) in
practice safer, and certainly more clear and elegant. However, we believe that with runtime
checking should come a culture of unit testing, which is not yet in place in Rivet.
As a final thought, one reason for Rivet’s internal complexity is that C++ is just not a
very good language for this sort of thing: we are operating on the boundary between event
generator codes, number crunching routines (including third party libraries like FastJet)
and user routines. The former set unavoidably require native interfaces and benefit from
static typing; the latter benefit from interface flexibility, fast prototyping and syntactic
clarity. Maybe a future version of Rivet will break through the technical barriers to a
hybrid approach and allow users to run compiled projections from interpreted analysis code.
For now, however, we hope that our brand of “slightly less safe C++” will be a pleasant
compromise.

12. Analyses

12.1 Writing a new analysis

This section provides a recipe that can be followed to write a new analysis using the Rivet
projections.

Every analysis must inherit from Rivet::Analysis and, in addition to the constructor,
must implement a minimum of three methods. Those methods are init(), analyze(const

– 68 –

Rivet::Event&) and finalize(), which are called once at the beginning of the analysis,
once per event and once at the end of the analysis respectively.

The new analysis should include the header for the base analysis class plus whichever
Rivet projections are to be used and should work under the Rivet namespace. The header for
a new analysis named UserAnalysis that uses the FinalState projection might therefore
start off looking like this:

#include "Rivet/Analysis.hh"

namespace Rivet {

class UserAnalysis : public Analysis {

public:

UserAnalysis();

void init();

void analyze(const Event& event);

void finalize();

};

}

12.1.1 Analysis constructor

The constructor for the UserAnalysis class should add to the analysis all of the pro-
jections that will be used. Projections can be added to an analysis with a call to
addProjection(Projection, std::string), which takes as argument the projection to
be added and a name by which that projection can later be referenced. For this example
the FinalState projection is to be referenced by the string "FS" to provide access to all of
the final state particles inside a detector pseudorapidity coverage of ±5.0. The syntax to
create and add that projection inside the constructor for UserAnalysis is as follows:

Rivet::UserAnalysis() {

const FinalState fs(-5.0, 5.0);

addProjection(fs, "FS");

}

In addition to adding projections, the constructor may also impose certain requirements
upon the events that the analysis will work with. A call to the setBeams method declares
that the analysis may only be run on events with specific types of beam particles, for
example adding the line

setBeams(PROTON, PROTON);

ensures that the analysis can only be run on events from proton-proton collisions. Other
types of beam particles that may be used include ANTIPROTON, ELECTRON, POSITRON, MUON

– 69 –

and ALL. The later of these declares that the analysis is suitable for use with any type of
collision and is the default.

Some analyses need to know the interaction cross section that was generated by the
Monte Carlo generator, typically in order to normalise histograms. Depending on the Monte
Carlo that is used and its interface to Rivet, the cross section may or may not be known.
An analysis can therefore declare at the beginning of a run that it will need the cross section
information during the finalisation stages. Such a declaration can be used to prevent what
would otherwise be fruitless analyses from running. An analysis sets itself as requiring the
cross section by calling inside the constructor

setNeedsCrossSection(true);

In the absence of this call the default is to assume that the analysis does not need to know
the cross section.

12.2 Histogramming

Rivet’s histogramming uses the AIDA interfaces, composed of abstract classes IHistogram1D,
IProfile1D, IDataPointSet etc. which are built by a factories system. Since it’s our
feeling that much of the factory infrastructure constitutes an abstraction overload, we
provide histogram booking functions as part of the Analysis class, so that in the init

method of your analysis you should book histograms with function calls like:

void MyAnalysis::init() {

_h_one = bookHistogram1D(2,1,1, "Title 2", "x label", "y label");

_h_two = bookProfile1D(3,1,2, "Title 2", "x label", "y label");

_h_three = bookHistogram1D("d00-x00-y00", "Title",

"x label", "y label", 50, 0.0, 1.0);

}

Here the first two bookings have a rather cryptic 3-integer sequence as the first
arguments. This is the recommended scheme, as it makes use of the exported data files
from HepData, in which 1D histograms are constructed from a combination of x and y axes
in a dataset d, corresponding to names of the form d〈d〉-x〈x 〉-y〈y〉 . This auto-booking
of histograms saves you from having to copy out reams of bin edges and values into your
code, and makes sure that any data fixes in HepData are easily propagated to Rivet. The
third booking is for a histogram for which there is no such HepData entry: it uses the usual
scheme of specifying the name, number of bins and the min/max x-axis limits manually.

Filling the histograms is done in the MyAnalysis::analyse() function. Remember to
specify the event weight as you fill:

void MyAnalysis::analyze(const Event& e) {

[projections, cuts, etc.]

...

_h_one->fill(pT, event.weight());

_h_two->fill(pT, Nch, event.weight());

– 70 –

_h_three->fill(fabs(eta), event.weight());

}

Finally, histogram normalisations, scalings, divisions etc. are done in the MyAnalysis::finalize()
method. For normalisations and scalings you will find appropriate convenience meth-
ods Analysis::normalize(histo, norm) and Analysis::scale(histo, scalefactor).
Many analyses need to be scaled to the generator cross-section, with the number of event
weights to pass cuts being included in the normalisation factor: for this you will have to
track the passed-cuts weight sum yourself via a member variable, but the analysis class
provides Analysis::crossSection() and Analysis::sumOfWeights() methods to access
the pre-cuts cross-section and weight sum respectively.

12.3 Pluggable analyses

Rivet’s standard analyses are not actually built into the main libRivet library: they are
loaded dynamically at runtime as an analysis plugin library. While you don’t need to worry
too much about the technicalities of this, it does mean that you can similarly write analyses
of your own, compile them into a similar plugin library and run them from rivet without
ever having to modify any of the main Rivet sources or build system. This means that you
can write and run your own analyses with a system-installed copy of Rivet, and not have to
re-patch the main library when a newer version comes out (although chances are you will
have to recompile, since the binary interface usually change between releases.)

You will find an example plugin analysis in the plugindemo directory in the Rivet source
directory, with a corresponding Makefile. To understand the plugin system better, you
should check out the documentation in the wiki on the Rivet website: http://projects.
hepforge.org/rivet/trac/wiki/

– 71 –

Part IV

How Rivet really works

In time this will be the place to look for all the nitty gritty on what Rivet is doing internally.
Not very many people need to know that, and the few that do currently don’t need a
manual for it!

13. Projection caching

FTODO

13.1 Writing a Projection comparison operator

FTODO

– 72 –

Part V

Appendices

A. Typical agile-runmc commands

• Simple run: agile-runmc Herwig:6510 -P lep1.params --beams=LEP:91.2 -n 1000

will use the Fortran Herwig 6.5.10 generator (the -g option switch) to generate 1000
events (the -n switch) in LEP1 mode, i.e. e+e− collisions at

√
s = 91.2 GeV.

• Parameter changes: agile-runmc Pythia6:418 --beams=LEP:91.2 -n 1000 \
-P myrun.params -p "PARJ(82)=5.27" will generate 1000 events using the Fortran
Pythia 6.4.18 generator, again in LEP1 mode. The -P switch is actually the way of
specifying a parameters file, with one parameter per line in the format “〈key〉 〈value〉”:
in this case, the file lep1.params is loaded from the 〈installdir〉/share/AGILe direc-
tory, if it isn’t first found in the current directory. The -p (lower-case) switch is
used to change a named generator parameter, here Pythia’s PARJ(82), which sets the
parton shower cutoff scale. Being able to change parameters on the command line is
useful for scanning parameter ranges from a shell loop, or rapid testing of parameter
values without needing to write a parameters file for use with -P.

• Writing out HepMC events: agile-runmc Pythia6:418 --beams=LHC:14TeV

-n 50 -o out.hepmc -R will generate 50 LHC events with Pythia. The -o switch is
being used here to tell agile-runmc to write the generated events to the out.hepmc

file. This file will be a plain text dump of the HepMC event records in the standard
HepMC format. Use of filename “-” will result in the event stream being written to
standard output (i.e. dumping to the terminal.

– 73 –

Part VI

Bibliography

References

[1] DELPHI Collaboration, P. Abreu et al., Z. Phys. C73, 11 (1996).

– 74 –

