ATLAS_2010_S8894728.cc

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 #include "Rivet/Analysis.hh"
00003 #include "Rivet/RivetAIDA.hh"
00004 #include "Rivet/Projections/ChargedFinalState.hh"
00005 #include "Rivet/Tools/Logging.hh"
00006 #include "LWH/Profile1D.h"
00007 #include "LWH/Histogram1D.h"
00008 
00009 namespace Rivet {
00010 
00011 
00012   class ATLAS_2010_S8894728 : public Analysis {
00013   public:
00014 
00015     ATLAS_2010_S8894728() : Analysis("ATLAS_2010_S8894728") {    }
00016 
00017 
00018     void init() {
00019       const ChargedFinalState cfs100(-2.5, 2.5, 100*MeV);
00020       addProjection(cfs100, "CFS100");
00021       const ChargedFinalState cfs500(-2.5, 2.5, 500*MeV);
00022       addProjection(cfs500, "CFS500");
00023       const ChargedFinalState cfslead(-2.5, 2.5, 1.0*GeV);
00024       addProjection(cfslead, "CFSlead");
00025 
00026       // Get an index for the beam energy
00027       int isqrts = -1;
00028       if (fuzzyEquals(sqrtS(), 900*GeV)) isqrts = 0;
00029       else if (fuzzyEquals(sqrtS(), 7*TeV)) isqrts = 1;
00030       assert(isqrts >= 0);
00031 
00032       // Nch profiles, 500 MeV track pT cut
00033       _hist_nch_transverse_500[0] = bookProfile1D(1+isqrts, 1, 1);
00034       _hist_nch_toward_500        = bookProfile1D(1+isqrts, 1, 2);
00035       _hist_nch_away_500          = bookProfile1D(1+isqrts, 1, 3);
00036 
00037       // pTsum profiles, 500 MeV track pT cut
00038       _hist_ptsum_transverse_500[0] = bookProfile1D(3+isqrts, 1, 1);
00039       _hist_ptsum_toward_500        = bookProfile1D(3+isqrts, 1, 2);
00040       _hist_ptsum_away_500          = bookProfile1D(3+isqrts, 1, 3);
00041 
00042       // Standard deviation profiles
00043       // First the higher moments of main profiles to calculate variance and error on variance...
00044       for (size_t i = 1; i < 4; ++i) {
00045         _hist_nch_transverse_500[i] = new LWH::Profile1D(binEdges(1+isqrts, 1, 1));
00046         _hist_ptsum_transverse_500[i] = new LWH::Profile1D(binEdges(3+isqrts, 1, 1));
00047       }
00048       // Then the data point sets into which the results will be inserted
00049       _dps_sdnch_transverse_500   = bookDataPointSet(5+isqrts, 1, 1);
00050       _dps_sdptsum_transverse_500 = bookDataPointSet(7+isqrts, 1, 1);
00051 
00052       // <pT> profiles, 500 MeV track pT cut
00053       _hist_ptavg_transverse_500 = bookProfile1D(9+isqrts, 1, 1);
00054       _hist_ptavg_toward_500     = bookProfile1D(9+isqrts, 1, 2);
00055       _hist_ptavg_away_500       = bookProfile1D(9+isqrts, 1, 3);
00056 
00057       // <pT> vs. Nch profiles, 500 MeV track pT cut
00058       _hist_dn_dpt_transverse_500 = bookProfile1D(11+isqrts, 1, 1);
00059       _hist_dn_dpt_toward_500     = bookProfile1D(11+isqrts, 1, 2);
00060       _hist_dn_dpt_away_500       = bookProfile1D(11+isqrts, 1, 3);
00061 
00062       // Nch vs. Delta(phi) profiles, 500 MeV track pT cut
00063       _hist_N_vs_dPhi_1_500 = bookProfile1D(13+isqrts, 1, 1);
00064       _hist_N_vs_dPhi_2_500 = bookProfile1D(13+isqrts, 1, 2);
00065       _hist_N_vs_dPhi_3_500 = bookProfile1D(13+isqrts, 1, 3);
00066       _hist_N_vs_dPhi_5_500 = bookProfile1D(13+isqrts, 1, 4);
00067       // pT vs. Delta(phi) profiles, 500 MeV track pT cut
00068       _hist_pT_vs_dPhi_1_500 = bookProfile1D(15+isqrts, 1, 1);
00069       _hist_pT_vs_dPhi_2_500 = bookProfile1D(15+isqrts, 1, 2);
00070       _hist_pT_vs_dPhi_3_500 = bookProfile1D(15+isqrts, 1, 3);
00071       _hist_pT_vs_dPhi_5_500 = bookProfile1D(15+isqrts, 1, 4);
00072 
00073       // Nch and pTsum profiles, 100 MeV track pT cut
00074       _hist_nch_transverse_100   = bookProfile1D(17+isqrts, 1, 1);
00075       _hist_nch_toward_100       = bookProfile1D(17+isqrts, 1, 2);
00076       _hist_nch_away_100         = bookProfile1D(17+isqrts, 1, 3);
00077       _hist_ptsum_transverse_100 = bookProfile1D(19+isqrts, 1, 1);
00078       _hist_ptsum_toward_100     = bookProfile1D(19+isqrts, 1, 2);
00079       _hist_ptsum_away_100       = bookProfile1D(19+isqrts, 1, 3);
00080 
00081       // Profiles vs. eta (7 TeV only)
00082       if (isqrts == 1) {
00083         _hist_nch_vs_eta_transverse_100   = bookProfile1D(21, 1, 1);
00084         _hist_ptsum_vs_eta_transverse_100 = bookProfile1D(22, 1, 1);
00085       }
00086 
00087     }
00088 
00089 
00090     // Little helper function to identify Delta(phi) regions
00091     inline int region_index(double dphi) {
00092       assert(inRange(dphi, 0.0, PI, CLOSED, CLOSED));
00093       if (dphi < PI/3.0) return 0;
00094       if (dphi < 2*PI/3.0) return 1;
00095       return 2;
00096     }
00097 
00098 
00099     void analyze(const Event& event) {
00100       const double weight = event.weight();
00101 
00102       // Require at least one track in the event with pT >= 1 GeV
00103       const ChargedFinalState& cfslead = applyProjection<ChargedFinalState>(event, "CFSlead");
00104       if (cfslead.size() < 1) {
00105         vetoEvent;
00106       }
00107 
00108       // These are the charged particles (tracks) with pT > 500 MeV
00109       const ChargedFinalState& charged500 = applyProjection<ChargedFinalState>(event, "CFS500");
00110 
00111       // Identify leading track and its phi and pT (this is the same for both the 100 MeV and 500 MeV track cuts)
00112       ParticleVector particles500 = charged500.particlesByPt();
00113       Particle p_lead = particles500[0];
00114       const double philead = p_lead.momentum().phi();
00115       const double etalead = p_lead.momentum().eta();
00116       const double pTlead  = p_lead.momentum().perp();
00117       MSG_DEBUG("Leading track: pT = " << pTlead << ", eta = " << etalead << ", phi = " << philead);
00118 
00119       // Iterate over all > 500 MeV particles and count particles and scalar pTsum in the three regions
00120       vector<double> num500(3, 0), ptSum500(3, 0.0);
00121       // Temporary histos that bin Nch and pT in dPhi.
00122       // NB. Only one of each needed since binnings are the same for the energies and pT cuts
00123       LWH::Histogram1D hist_num_dphi_500(binEdges(13,1,1));
00124       LWH::Histogram1D hist_pt_dphi_500(binEdges(15,1,1));
00125       foreach (const Particle& p, particles500) {
00126         const double pT = p.momentum().pT();
00127         const double dPhi = deltaPhi(philead, p.momentum().phi());
00128         const int ir = region_index(dPhi);
00129         num500[ir] += 1;
00130         ptSum500[ir] += pT;
00131 
00132         // Fill temp histos to bin Nch and pT in dPhi
00133         if (p.genParticle() != p_lead.genParticle()) { // We don't want to fill all those zeros from the leading track...
00134           hist_num_dphi_500.fill(dPhi, 1);
00135           hist_pt_dphi_500.fill(dPhi, pT);
00136         }
00137       }
00138 
00139 
00140       // Iterate over charged particles again for profiles against Nch
00141       // This is necessary since the Nch are region-specific and so are only known after the first loop
00142       foreach (const Particle& p, particles500) {
00143         const double pT = p.momentum().pT();
00144         const double dPhi = deltaPhi(philead, p.momentum().phi());
00145         const int ir = region_index(dPhi);
00146         switch (ir) {
00147         case 0:
00148           _hist_dn_dpt_toward_500->fill(num500[0], pT, weight);
00149           break;
00150         case 1:
00151           _hist_dn_dpt_transverse_500->fill(num500[1], pT, weight);
00152           break;
00153         case 2:
00154           _hist_dn_dpt_away_500->fill(num500[2], pT, weight);
00155           break;
00156         default:
00157           assert(false && "How did we get here?");
00158         }
00159       }
00160 
00161 
00162       // Now fill underlying event histograms
00163       // The densities are calculated by dividing the UE properties by dEta*dPhi
00164       // -- each region has a dPhi of 2*PI/3 and dEta is two times 2.5
00165       const double dEtadPhi = (2*2.5 * 2*PI/3.0);
00166       // Transverse profiles need 4 orders of moments for stddev with errors
00167       for (int i = 0; i < 4; ++i) {
00168         _hist_nch_transverse_500[i]->fill(pTlead/GeV, pow(num500[1]/dEtadPhi, i+1), weight);
00169         _hist_ptsum_transverse_500[i]->fill(pTlead/GeV, pow(ptSum500[1]/GeV/dEtadPhi, i+1), weight);
00170       }
00171       // Toward and away profiles only need the first moment (the mean)
00172       _hist_nch_toward_500->fill(pTlead/GeV, num500[0]/dEtadPhi, weight);
00173       _hist_nch_away_500->fill(pTlead/GeV, num500[2]/dEtadPhi, weight);
00174       _hist_ptsum_toward_500->fill(pTlead/GeV, ptSum500[0]/GeV/dEtadPhi, weight);
00175       _hist_ptsum_away_500->fill(pTlead/GeV, ptSum500[2]/GeV/dEtadPhi, weight);
00176       // <pT> profiles
00177       //MSG_INFO("Trans pT1, pTsum, Nch, <pT>" << pTlead/GeV << ", " <<  ptSum500[1]/GeV << ", " << num500[1] << ", " << ptSum500[1]/GeV/num500[1]);
00178       if (num500[1] > 0) _hist_ptavg_transverse_500->fill(pTlead/GeV, ptSum500[1]/GeV/num500[1], weight);
00179       if (num500[0] > 0) _hist_ptavg_toward_500->fill(pTlead/GeV, ptSum500[0]/GeV/num500[0], weight);
00180       if (num500[2] > 0) _hist_ptavg_away_500->fill(pTlead/GeV, ptSum500[2]/GeV/num500[2], weight);
00181 
00182 
00183       // Update the "proper" dphi profile histograms
00184       // Note that we fill dN/dEtadPhi: dEta = 2*2.5, dPhi = 2*PI/nBins
00185       // The values tabulated in the note are for an (undefined) signed Delta(phi) rather than
00186       // |Delta(phi)| and so differ by a factor of 2: we have to actually norm for angular range = 2pi
00187       const size_t nbins = binEdges(13,1,1).size() - 1;
00188       std::vector<double> ptcut;
00189       if (fuzzyEquals(sqrtS(), 900*GeV)) {
00190         ptcut += 1.0; ptcut += 1.5; ptcut += 2.0; ptcut += 2.5;
00191       }
00192       else if (fuzzyEquals(sqrtS(), 7*TeV)) {
00193         ptcut += 1.0; ptcut += 2.0; ptcut += 3.0; ptcut += 5.0;
00194       }
00195       assert(ptcut.size() == 4);
00196       for (size_t i = 0; i < nbins; ++i) {
00197         // First Nch
00198         const double binmean_num = hist_num_dphi_500.binMean(i);
00199         const double binvalue_num = hist_num_dphi_500.binHeight(i)/hist_num_dphi_500.axis().binWidth(i)/10.0;
00200         if (pTlead/GeV >= ptcut[0]) _hist_N_vs_dPhi_1_500->fill(binmean_num, binvalue_num, weight);
00201         if (pTlead/GeV >= ptcut[1]) _hist_N_vs_dPhi_2_500->fill(binmean_num, binvalue_num, weight);
00202         if (pTlead/GeV >= ptcut[2]) _hist_N_vs_dPhi_3_500->fill(binmean_num, binvalue_num, weight);
00203         if (pTlead/GeV >= ptcut[3]) _hist_N_vs_dPhi_5_500->fill(binmean_num, binvalue_num, weight);
00204         // Then pT
00205         const double binmean_pt = hist_pt_dphi_500.binMean(i);
00206         const double binvalue_pt = hist_pt_dphi_500.binHeight(i)/hist_pt_dphi_500.axis().binWidth(i)/10.0;
00207         if (pTlead/GeV >= ptcut[0]) _hist_pT_vs_dPhi_1_500->fill(binmean_pt, binvalue_pt, weight);
00208         if (pTlead/GeV >= ptcut[1]) _hist_pT_vs_dPhi_2_500->fill(binmean_pt, binvalue_pt, weight);
00209         if (pTlead/GeV >= ptcut[2]) _hist_pT_vs_dPhi_3_500->fill(binmean_pt, binvalue_pt, weight);
00210         if (pTlead/GeV >= ptcut[3]) _hist_pT_vs_dPhi_5_500->fill(binmean_pt, binvalue_pt, weight);
00211       }
00212 
00213 
00214       //////////////////////
00215 
00216 
00217       // These are the charged particles (tracks) with pT > 100 MeV
00218       const ChargedFinalState& charged100 = applyProjection<ChargedFinalState>(event, "CFS100");
00219 
00220       // Iterate over all > 100 MeV particles and count particles and scalar pTsum in the three regions
00221       vector<double> num100(3, 0), ptSum100(3, 0.0);
00222       foreach (const Particle& p, charged100.particles()) {
00223         const double pT = p.momentum().pT();
00224         const double dPhi = deltaPhi(philead, p.momentum().phi());
00225         const int ir = region_index(dPhi);
00226         num100[ir] += 1;
00227         ptSum100[ir] += pT;
00228       }
00229 
00230       // Now fill the two sets of 100 MeV underlying event histograms
00231       _hist_nch_transverse_100->fill(pTlead/GeV, num100[1]/dEtadPhi, weight);
00232       _hist_nch_toward_100->fill(pTlead/GeV, num100[0]/dEtadPhi, weight);
00233       _hist_nch_away_100->fill(pTlead/GeV, num100[2]/dEtadPhi, weight);
00234       _hist_ptsum_transverse_100->fill(pTlead/GeV, ptSum100[1]/GeV/dEtadPhi, weight);
00235       _hist_ptsum_toward_100->fill(pTlead/GeV, ptSum100[0]/GeV/dEtadPhi, weight);
00236       _hist_ptsum_away_100->fill(pTlead/GeV, ptSum100[2]/GeV/dEtadPhi, weight);
00237 
00238       // And finally the Nch and pT vs eta_lead profiles (again from > 100 MeV tracks, and only at 7 TeV)
00239       if (fuzzyEquals(sqrtS(), 7*TeV) && pTlead > 5*GeV) {
00240         // MSG_INFO(sqrtS() << " " << pTlead << " " << ptSum100[1]/dEtadPhi << " " << num100[1]/dEtadPhi);
00241         _hist_nch_vs_eta_transverse_100->fill(etalead, num100[1]/dEtadPhi, weight);
00242         _hist_ptsum_vs_eta_transverse_100->fill(etalead, ptSum100[1]/GeV/dEtadPhi, weight);
00243       }
00244 
00245     }
00246 
00247 
00248     void finalize() {
00249       // Convert the various moments of the 500 MeV trans pT and Nch distributions to std devs with correct error
00250       _moments_to_stddev(_hist_nch_transverse_500, _dps_sdnch_transverse_500);
00251       _moments_to_stddev(_hist_ptsum_transverse_500, _dps_sdptsum_transverse_500);
00252     }
00253 
00254 
00255   private:
00256 
00257 
00258     inline void _moments_to_stddev(AIDA::IProfile1D* moment_profiles[], AIDA::IDataPointSet* target_dps) {
00259       for (int b = 0; b < target_dps->size(); ++b) { // loop over bins
00260         /// @todo Assuming unit weights here! Should use N_effective = sumW**2/sumW2? How?
00261         const double numentries = moment_profiles[0]->binEntries(b);
00262         const double var = moment_profiles[1]->binHeight(b) - pow(moment_profiles[0]->binHeight(b), 2);
00263         const double sd = isZero(var) ? 0 : sqrt(var); //< Numerical safety check
00264         target_dps->point(b)->coordinate(1)->setValue(sd);
00265         if (sd == 0 || numentries < 3) {
00266           MSG_WARNING("Need at least 3 bin entries and a non-zero central value to calculate "
00267                       << "an error on standard deviation profiles (bin " << b << ")");
00268           target_dps->point(b)->coordinate(1)->setErrorPlus(0);
00269           target_dps->point(b)->coordinate(1)->setErrorMinus(0);
00270           continue;
00271         }
00272         // c2(y) = m4(x) - 4 m3(x) m1(x) - m2(x)^2 + 8 m2(x) m1(x)^2 - 4 m1(x)^4
00273         const double var_on_var = moment_profiles[3]->binHeight(b)
00274           - 4 * moment_profiles[2]->binHeight(b) * moment_profiles[0]->binHeight(b)
00275           - pow(moment_profiles[1]->binHeight(b), 2)
00276           + 8 * moment_profiles[1]->binHeight(b) * pow(moment_profiles[0]->binHeight(b), 2)
00277           - 4 * pow(moment_profiles[0]->binHeight(b), 4);
00278         const double stderr_on_var = sqrt(var_on_var/(numentries-2.0));
00279         const double stderr_on_sd = stderr_on_var / (2.0*sd);
00280         target_dps->point(b)->coordinate(1)->setErrorPlus(stderr_on_sd);
00281         target_dps->point(b)->coordinate(1)->setErrorMinus(stderr_on_sd);
00282       }
00283     }
00284 
00285 
00286   private:
00287 
00288     AIDA::IProfile1D*  _hist_nch_transverse_500[4];
00289     AIDA::IProfile1D*  _hist_nch_toward_500;
00290     AIDA::IProfile1D*  _hist_nch_away_500;
00291 
00292     AIDA::IProfile1D*  _hist_ptsum_transverse_500[4];
00293     AIDA::IProfile1D*  _hist_ptsum_toward_500;
00294     AIDA::IProfile1D*  _hist_ptsum_away_500;
00295 
00296     AIDA::IDataPointSet*  _dps_sdnch_transverse_500;
00297     AIDA::IDataPointSet*  _dps_sdptsum_transverse_500;
00298 
00299     AIDA::IProfile1D* _hist_ptavg_transverse_500;
00300     AIDA::IProfile1D* _hist_ptavg_toward_500;
00301     AIDA::IProfile1D* _hist_ptavg_away_500;
00302 
00303     AIDA::IProfile1D*  _hist_dn_dpt_transverse_500;
00304     AIDA::IProfile1D*  _hist_dn_dpt_toward_500;
00305     AIDA::IProfile1D*  _hist_dn_dpt_away_500;
00306 
00307     AIDA::IProfile1D*  _hist_N_vs_dPhi_1_500;
00308     AIDA::IProfile1D*  _hist_N_vs_dPhi_2_500;
00309     AIDA::IProfile1D*  _hist_N_vs_dPhi_3_500;
00310     AIDA::IProfile1D*  _hist_N_vs_dPhi_5_500;
00311 
00312     AIDA::IProfile1D*  _hist_pT_vs_dPhi_1_500;
00313     AIDA::IProfile1D*  _hist_pT_vs_dPhi_2_500;
00314     AIDA::IProfile1D*  _hist_pT_vs_dPhi_3_500;
00315     AIDA::IProfile1D*  _hist_pT_vs_dPhi_5_500;
00316 
00317     AIDA::IProfile1D*  _hist_nch_transverse_100;
00318     AIDA::IProfile1D*  _hist_nch_toward_100;
00319     AIDA::IProfile1D*  _hist_nch_away_100;
00320     AIDA::IProfile1D*  _hist_ptsum_transverse_100;
00321     AIDA::IProfile1D*  _hist_ptsum_toward_100;
00322     AIDA::IProfile1D*  _hist_ptsum_away_100;
00323 
00324     AIDA::IProfile1D* _hist_nch_vs_eta_transverse_100;
00325     AIDA::IProfile1D* _hist_ptsum_vs_eta_transverse_100;
00326 
00327   };
00328 
00329 
00330 
00331   // The hook for the plugin system
00332   DECLARE_RIVET_PLUGIN(ATLAS_2010_S8894728);
00333 
00334 }