rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

HyperCP_2005_I677384

Measurement of asymmetry in $\Omega^-\to\Lambda^0K^-$
Experiment: HyperCP ()
Inspire ID: 677384
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev. D71 (2005) 051102
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing Omega baryons

The Hyper CP experiment measured the asymmetry parameter in the decay $\Omega^-\to\Lambda^0K^-$, in practice this is a fit to a normalised distribution $\frac12(1+\alpha\cos\theta)$. The paper only gives the number for the $\alpha$ parameter and not the distribution, so the distribution is calculated. The $\alpha$ parameter is then extracted using a $\chi^2$ fit. This analysis is useful for testing spin correlations in hadron decays.

Source code: HyperCP_2005_I677384.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief asymmetry in Omega-> Lambda K
  class HyperCP_2005_I677384 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(HyperCP_2005_I677384);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(UnstableParticles(), "UFS" );

      // Book histograms
      book(_h_cthetaP  , "cthetaP"  ,20,-1,1);
      book(_h_cthetaM  , "cthetaM"  ,20,-1,1);
      book(_h_cthetaAll, "cthetaAll",20,-1,1);

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // loop over Omega baryons
      for(const Particle& Omega : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==3334)) {
	int sign = Omega.pid()/3334;
	if(Omega.children().size()!=2) continue;
	Particle Lambda,kaon;
	if(Omega.children()[0].pid()==sign*3122 && 
	   Omega.children()[1].pid()==-sign*321) {
	  Lambda = Omega.children()[0];
	  kaon   = Omega.children()[1];
	}
	else if(Omega.children()[1].pid()==sign*3122 && 
		Omega.children()[0].pid()==-sign*321) {
	  Lambda = Omega.children()[1];
	  kaon   = Omega.children()[0];
	}
	else
	  continue;
	if(Lambda.children().size()!=2) continue;
	Particle proton,pion;
	if(Lambda.children()[0].pid()==sign*2212 && 
	   Lambda.children()[1].pid()==-sign*211) {
	  proton = Lambda.children()[0];
	  pion   = Lambda.children()[1];
	}
	else if(Lambda.children()[1].pid()==sign*2212 && 
		Lambda.children()[0].pid()==-sign*211) {
	  proton = Lambda.children()[1];
	  pion   = Lambda.children()[0];
	}
	else
	  continue;
	// first boost to the Omega rest frame
	LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Omega.momentum().betaVec());
	FourMomentum pLambda = boost1.transform(Lambda.momentum());
	FourMomentum pproton = boost1.transform(proton.momentum());
	// to lambda rest frame
	LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pLambda.betaVec());
	Vector3 axis = pLambda.p3().unit();
	FourMomentum pp = boost2.transform(pproton);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	_h_cthetaAll->fill(cTheta,1.);
	if(sign==1) {
	  _h_cthetaM->fill(cTheta,1.);
	}
	else {
	  _h_cthetaP->fill(cTheta,1.);
	}
      }
    }

    pair<double,double> calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai = 0.5*(bin.xMax()-bin.xMin());
	double bi = 0.5*ai*(bin.xMax()+bin.xMin());
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      normalize(_h_cthetaP  );
      normalize(_h_cthetaM  );
      normalize(_h_cthetaAll);
      // calculate the values of alpha
      Scatter2DPtr _h_alphaP;
      book(_h_alphaP,1,1,1);
      pair<double,double> alpha = calcAlpha(_h_cthetaP);
      _h_alphaP->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      Scatter2DPtr _h_alphaM;
      book(_h_alphaM,1,1,2);
      alpha = calcAlpha(_h_cthetaM);
      _h_alphaM->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      Scatter2DPtr _h_alphaAll;
      book(_h_alphaAll,1,1,3);
      alpha = calcAlpha(_h_cthetaAll);
      _h_alphaAll->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_cthetaP,_h_cthetaM,_h_cthetaAll;
    //@}


  };


  // The hook for the plugin system
  DECLARE_RIVET_PLUGIN(HyperCP_2005_I677384);


}