rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

ATLAS_2013_I1217863_W

W + gamma production at 7 TeV
Experiment: ATLAS (LHC)
Inspire ID: 1217863
Status: VALIDATED
Authors:
  • Chritian Gutschow
References: Beams: p+ p+
Beam energies: (3500.0, 3500.0) GeV
Run details:
  • W+gamma in the electron channel

Measurements of the differential fiducial cross sections for the production of a W boson in association with a high-energy photon are measured using pp collisions at $\sqrt{s}=7 \text{TeV}$. The analysis uses a data sample with an integrated luminosity of 4.6/fb collected by the ATLAS detector during the 2011 LHC data-taking period. Events are selected using leptonic decays of the W bosons with the requirement of an associated isolated photon. The default routine will consider the electron decay channel of the W boson. Use ATLAS_2013_I1217863_W_EL and ATLAS_2013_I1217863_W_MU to specify the decay channel directly.

Source code: ATLAS_2013_I1217863_W.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/WFinder.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/LeadingParticlesFinalState.hh"

namespace Rivet {


  class ATLAS_2013_I1217863_W : public Analysis {
  public:

    /// Constructor
    ATLAS_2013_I1217863_W(string name="ATLAS_2013_I1217863_W")
      : Analysis(name)
    {
      // the electron mode is used by default
      _mode = 1;
    }


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      FinalState fs;
      declare(fs, "FS");

      Cut cuts = Cuts::abseta < 2.47 && Cuts::pT > 25*GeV;

      // W finder for electrons and muons
      WFinder wf(fs, cuts, _mode==3? PID::MUON : PID::ELECTRON, 0.0*GeV, 1000.0*GeV, 35.0*GeV, 0.1,
                                     WFinder::CLUSTERNODECAY, WFinder::NOTRACK, WFinder::TRANSMASS);
      declare(wf, "WF");

      // leading photon
      LeadingParticlesFinalState photonfs(FinalState(Cuts::abseta < 2.37 && Cuts::pT > 15*GeV));
      photonfs.addParticleId(PID::PHOTON);
      declare(photonfs, "LeadingPhoton");

      // jets
      VetoedFinalState jet_fs(fs);
      jet_fs.addVetoOnThisFinalState(getProjection<WFinder>("WF"));
      jet_fs.addVetoOnThisFinalState(getProjection<LeadingParticlesFinalState>("LeadingPhoton"));
      FastJets jets(jet_fs, FastJets::ANTIKT, 0.4);
      jets.useInvisibles(true);
      declare(jets, "Jets");

      // FS excluding the leading photon
      VetoedFinalState vfs(fs);
      vfs.addVetoOnThisFinalState(photonfs);
      declare(vfs, "isolatedFS");


      // Book histograms
      _hist_EgammaT_incl   = bookHisto1D( 7, 1, _mode); // dSigma / dE^gamma_T for Njet >= 0
      _hist_EgammaT_excl   = bookHisto1D( 8, 1, _mode); // dSigma / dE^gamma_T for Njet = 0
      _hist_Njet_EgammaT15 = bookHisto1D(15, 1, _mode); // dSigma / dNjet for E^gamma_T > 15
      _hist_Njet_EgammaT60 = bookHisto1D(16, 1, _mode); // dSigma / dNjet for E^gamma_T > 60
      _hist_mWgammaT       = bookHisto1D(19, 1, _mode); // dSigma / dm^{Wgamma}_T

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      const double weight = event.weight();

      // retrieve leading photon
      Particles photons = apply<LeadingParticlesFinalState>(event, "LeadingPhoton").particles();
      if (photons.size() != 1)  vetoEvent;
      const Particle& leadingPhoton = photons[0];
      if (leadingPhoton.Et() < 15.0*GeV) vetoEvent;
      if (leadingPhoton.abseta() > 2.37) vetoEvent;

      // check photon isolation
      double coneEnergy(0.0);
      Particles fs = apply<VetoedFinalState>(event, "isolatedFS").particles();
      for (const Particle& p : fs) {
        if ( deltaR(leadingPhoton, p) < 0.4 )  coneEnergy += p.E();
      }
      if ( coneEnergy / leadingPhoton.E() >= 0.5 )  vetoEvent;

      // retrieve W boson candidate
      const WFinder& wf = apply<WFinder>(event, "WF");
      if ( wf.bosons().size() != 1 )  vetoEvent; // only one W boson candidate
      //const Particle& Wboson  = wf.boson();

      // retrieve constituent neutrino
      const Particle& neutrino = wf.constituentNeutrino();
      if ( !(neutrino.pT() > 35.0*GeV) )  vetoEvent;

      // retrieve constituent lepton
      const Particle& lepton = wf.constituentLepton();
      if ( !(lepton.pT() > 25.0*GeV && lepton.abseta() < 2.47) )  vetoEvent;

      // check photon-lepton overlap
      if ( !(deltaR(leadingPhoton, lepton) > 0.7) )  vetoEvent;

      // count jets
      const FastJets& jetfs = apply<FastJets>(event, "Jets");
      Jets jets = jetfs.jets(cmpMomByEt);
      int goodJets = 0;
      for (const Jet& j : jets) {
        if ( !(j.Et() > 30.0*GeV) )  break;
        if ( (j.abseta() < 4.4) && \
             (deltaR(leadingPhoton, j) > 0.3) &&            \
             (deltaR(lepton,        j) > 0.3) )  ++goodJets;
      }

      double Njets = double(goodJets) + 0.5;
      double photonEt = leadingPhoton.Et()*GeV;

      const FourMomentum& lep_gamma = lepton.momentum() + leadingPhoton.momentum();
      double term1 = sqrt(lep_gamma.mass2() + lep_gamma.pT2()) + neutrino.Et();
      double term2 = (lep_gamma + neutrino.momentum()).pT2();
      double mWgammaT = sqrt(term1 * term1 - term2) * GeV;

      _hist_EgammaT_incl->fill(photonEt, weight);

      _hist_Njet_EgammaT15->fill(Njets, weight);

      if ( !goodJets )  _hist_EgammaT_excl->fill(photonEt, weight);

      if (photonEt > 40.0*GeV) {
        _hist_mWgammaT->fill(mWgammaT, weight);
        if (photonEt > 60.0*GeV)  _hist_Njet_EgammaT60->fill(Njets, weight);
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {

      const double xs_fb = crossSection()/femtobarn;
      const double sumw = sumOfWeights();
      const double sf = xs_fb / sumw;

      scale(_hist_EgammaT_excl, sf);
      scale(_hist_EgammaT_incl, sf);

      normalize(_hist_Njet_EgammaT15);
      normalize(_hist_Njet_EgammaT60);
      normalize(_hist_mWgammaT);

    }

    //@}

  protected:

    size_t _mode;

  private:

    /// @name Histograms
    //@{

    Histo1DPtr _hist_EgammaT_incl;
    Histo1DPtr _hist_EgammaT_excl;
    Histo1DPtr _hist_Njet_EgammaT15;
    Histo1DPtr _hist_Njet_EgammaT60;
    Histo1DPtr _hist_mWgammaT;

    //@}

  };


  class ATLAS_2013_I1217863_W_EL : public ATLAS_2013_I1217863_W {
  public:
    ATLAS_2013_I1217863_W_EL()
      : ATLAS_2013_I1217863_W("ATLAS_2013_I1217863_W_EL")
    {
      _mode = 2;
    }
  };


  class ATLAS_2013_I1217863_W_MU : public ATLAS_2013_I1217863_W {
  public:
    ATLAS_2013_I1217863_W_MU()
      : ATLAS_2013_I1217863_W("ATLAS_2013_I1217863_W_MU")
    {
      _mode = 3;
    }
  };


  DECLARE_RIVET_PLUGIN(ATLAS_2013_I1217863_W);
  DECLARE_RIVET_PLUGIN(ATLAS_2013_I1217863_W_EL);
  DECLARE_RIVET_PLUGIN(ATLAS_2013_I1217863_W_MU);

}