
Rivet tutorial

Andy Buckley

ATLAS Rivet tutorial, 2011-03-21

1/27

Contents

1 Introduction
2 First Rivet runs
3 Writing a first analysis
4 Writing a data analysis

2/27

Introduction

3/27

What is Rivet?

Rivet is a generator-agnostic validation system for MC
generators.

More simply, it’s a tool to produce physics plots from an MC
generator code which can produce HepMC events. (i.e. every
ATLAS generator – see Generators/Rivet_i)

This is useful for validating generators – only need to write the
analysis once and it can be used to validate and compare every
generator that should be able to simulate it.

Policy in ATLAS Standard Model group is that each data
analysis should produce a Rivet MC analysis for analysis and
MC validation.

Also useful as an input to MC tuning.

4/27

Some more on Rivet’s design

MC analysis system operating on HepMC events. Intentionally
ignorant of what generator produced the events it sees.

Emphasis on not messing with the MC implementation details:
actually reconstruct bosons, don’t trace back partons, etc. Life is
(eventually) simpler this way!

Lots of standard analyses built in, including key ones for pQCD
and MPI model testing. New analyses can be picked up at
runtime: nice API with lots of tools to make this as simple and
pleasant as we can. Computations automatically cached.
Histograms automatically synchronised.

Please write Rivet analyses of your analysis and contribute them
(to the ATLAS MC tuning group in first instance).

Latest version is 1.5.0.

5/27

Setup
Rivet docs: online at http://projects.hepforge.org/rivet/ – PDF
manual, HTML list of existing analyses, and Doxygen.

Log in to lxplus. If you’re not running bash shell (echo $SHELL),
then run bash to make life more pleasant.

I Set up to use the ATLAS GCC and Python versions (not the
SLC5 defaults), e.g.
asetup 16.6.3 (alternatively, source the LCG GCC 4.3 and Python 2.6
setup scripts by hand)

I Genser Rivet setup:
source /afs/cern.ch/sw/lcg/external/MCGenerators/

rivet/1.5.0/i686-slc5-gcc43-opt/rivetenv.sh

I Genser AGILe setup:
source /afs/.cern.ch/sw/lcg/external/MCGenerators/

agile/1.2.0/i686-slc5-gcc43-opt/agileenv.sh

Test commands: rivet --help agile-runmc --help
6/27

http://projects.hepforge.org/rivet/

First Rivet runs

7/27

Viewing available analyses
Rivet knows all sorts of details about its analyses!

I List available analyses:
rivet --list-analyses

I List available analyses with a little more detail:
rivet --list-analyses -v

I List ATLAS analyses with a little more detail:
rivet --list-analyses -v ATLAS_

I Show some pure-MC analyses’ full details:
rivet --show-analysis MC_

The PDF and HTML documentation is also built from this info,
so is always synchronised.

The analysis metadata is provided via the analysis API and usually read from
an .info file which accompanies the analysis.

8/27

Running a simple analysis (standalone)

For simplicity, we get the events from generator to Rivet by
writing to a filesystem pipe. NB. This has to live in a non-AFS
directory!
mkfifo /tmp/$USER/hepmc.fifo

We’re going to use AGILe to run PYTHIA 6 for demonstration –
use the same or run any other generator that you like with
HepMC output going to the FIFO:
agile-runmc Pythia6:424 --beams=LHC:7000 -n 2000 -o

/tmp/$USER/hepmc.fifo &

Now attach Rivet to the other end of the pipe:
rivet -a MC_GENERIC /tmp/$USER/hepmc.fifo

Tada! You can use multiple analyses at once, change the output
file, etc.: see rivet --help

9/27

Plotting

Sorry, no ROOT! (Well, you can convert the Rivet output with
the aida2root script. . .)

For now we are using the LWH implementation of the AIDA
interfaces. The plots are written out as DataPointSet objects in
AIDA XML format. A histogramming upgrade is underway!

Plotting is pretty easy, though:
compare-histos Rivet.aida

make-plots *.dat

Then view with a file browser/evince/gv/xpdf. . . --eps, --png
etc. also work. And --help is available for all Rivet scripts.

10/27

Running a data analysis

We’re going to use the ATLAS 900 GeV/7 TeV min bias analysis:
rivet --show-analysis ATLAS_2010_S8918562

Note that tab completion should work on rivet options and
analysis names.

Now to run it:
agile-runmc command as before, but with --beams=LHC:900

rivet -a ATLAS_2010_S8918562 /tmp/$USER/hepmc.fifo

And plot, much as before:
compare-histos Rivet.aida

make-plots --pdfpng ATLAS*.dat

You could also use rivet-mkhtml --pdf Rivet.aida

11/27

Running Rivet in Athena

Now we’ll run some analyses via the Athena Rivet interface,
Rivet_i. You are already set up to use the 16.6.3 release
candidate build via asetup, so now just get the example Rivet
job options from the build:

get_files -jo jobOptions.rivet.py

Modify this JO to run the MC_GENERIC, MC_JETS, and
D0_2004_S5992206 analyses (the event generator is set to run in
Tevatron Run II mode.)

Can you identify and run the ATLAS 2011 version of this dijet
∆φ12 decorrelation analysis?

Can you find the other example Rivet JO script, to allow reading
from evgen POOL files?

12/27

Writing a first analysis

13/27

Writing an analysis
Writing an analysis is of course more involved than just running
rivet! However, the C++ API is intended to be friendly: most
analyses are quite short and simple because the bulk of the
computation is in the library.

An example is usually the best instruction: take a look at
/afs/cern.ch/sw/lcg/external/MCGenerators/rivet/

1.5.0/share/src/Analyses/MC_GENERIC.cc

Things to note:

I Analyses are classes and inherit from Rivet::Analysis

I Usual init/execute/finalize-type event loop structure
(familiar from Athena)

I Weird projection things in init and analyze

I Mostly normal-looking everything else

14/27

Projections – registration

Major idea: projections. These are where the computational
meat of Rivet resides. They are just observable calculators: given
an Event object, they project out physical observables. They also
automatically cache themselves, to avoid recomputation: this
leads to the most unintuitive code structures in Rivet.

They are registered with a name in the init method:

void init() {
...
const SomeProjection sp(foo, bar);
addProjection(sp, "MySP");
...

}

15/27

Projections – applying

Projections were registered with a name. . . they are then applied
to the current event, also by name:

void analyze(const Event& evt) {
...
const BaseSomeProjection& mysp =

applyProjection<SomeProjectionBase>(evt, "MySP");
mysp.foo()
...

}

We prefer to get a handle to the applied projection as a const reference
to avoid unnecessary copying.

It can then be queried about the things it has
computed.Projections have different abilities and interfaces:
check the Doxygen on the Rivet website.

16/27

Final state projections
Rivet is mildly obsessive about only calculating things from final
state objects. Accordingly, a very important set of projections is
those used to extract final state particles: these all inherit from
FinalState.

I The FinalState projection finds all final state particles in a
given η range, with a given pT cutoff.

I Subclasses ChargedFinalState and NeutralFinalState have
the predictable effect!

I IdentifiedFinalState can be used to find particular
particle species.

I VetoedFinalState finds particles other than specified.
I VisibleFinalState excludes invisible particles like

neutrinos, LSP, etc.

Most FSPs can take another FSP as a constructor argument and
augment it.

17/27

Using FSPs to get final state particles

void analyze(const Event& evt) {
...
const FinalState& cfs =
applyProjection<FinalState>(event, "ChgdFS");

MSG_INFO("Total charged mult. = " << cfs.size());
foreach (const Particle& p, cfs.particles()) {

const double eta = p.momentum().eta();
MSG_DEBUG("Particle eta = " << eta);

}
...

}

Note the lovely foreach macro – from Boost. We are very into
the “make simple things simple” philosophy. Please use foreach

when appropriate in any code that you contribute to Rivet.

18/27

Physics vectors

Rivet uses its own physics vectors rather than CLHEP. They are
a little nicer to use, but basically familiar. As usual, check
Doxygen: http://projects.hepforge.org/rivet/code/dev/

Particle and Jet both have a momentum() method which returns
a FourMomentum.

Some FourMomentum methods: eta(), pT(), phi(), rapidity(),
E(), px() etc., mass(). Hopefully intuitive!

19/27

http://projects.hepforge.org/rivet/code/dev/

Histogramming

AIDA has Histogram1D and Profile1D histograms similar to the
core TH1D and TProfile in ROOT.

Histos can be booked via helper methods on the Analysis base
class, which register the histograms at an appropriate path for
their parent analysis, e.g. bookHistogram1D("thisname", 50, 0,

100). They can also be booked via a vector of bin edges or
autobooked from a reference histogram.

The histograms have the usual fill(value, weight) method for
use in the analyze method. There are scale() and normalize()

methods for use in finalize.

The fill weight is important! Generators are often run with some
kinematic enhancement which has to be offset with a reduced
weight. Use evt.weight().

20/27

Your first analysis
Let’s start with a simple “min bias” type of analysis, just plotting
some simple particle properties like η, pT, φ, etc. (. . . mean pT vs.
nch if you’re feeling confident!)

To get an analysis template, which you can fill in with an FS
projection and a particle loop, run rivet-mkanalysis

MY_TEST_ANALYSIS – this will make the required files.
Before Rivet 1.5.1, you have to edit the generated .info file before you can run.

Once you’ve filled it in, you can either compile directly with g++,
using the rivet-config script as a compile flag helper, or – more
helpfully – run
rivet-buildplugin RivetMyTest.so MY_TEST_ANALYSIS.cc

In this setup, where we’re using the 32 bit Rivet on a 64 bit
system, add -m32

To run, first export RIVET_ANALYSIS_PATH=$PWD, then run rivet

as before.
21/27

Writing a data analysis

22/27

Starting a data analysis
If you are implementing an analysis for which there is already
experimental data in HepData, rivet-mkanalysis has another
nice trick up its sleeve.

Let’s reimplement the ATLAS dijet analysis. The SPIRES key for
this analysis is 8817804 and it was published in 2010, so we use
the standard Rivet naming convention: this analysis will be
called ATLAS_2010_S8817804.

Run rivet-mkanalysis ATLAS_2010_S8817804. You should now
have the .cc and .info template files as before, but also a new
.aida file. You can view the contents of this with the aida2flat

or aida2root script:
aida2flat ATLAS_2010_S8817804.aida | less

The histogram names in this data file can be used for histogram
autobooking.

23/27

Histogram autobooking
The final framework feature to introduce is histogram
autobooking. This is a means for getting your Rivet histograms
binned with the same bin edges as used in the experimental data
that you’ll be comparing to.

To use autobooking, just call the booking helper function with
only the histogram name (check that this matches the name in
the reference .aida file), e.g.
_hist1 = bookHistogram1D("d01-x01-y01")

The “d”, “x” and “y” terms are the indices of the HepData dataset, x-axis, and
y-axis for this histogram in this paper.

A neater form of the helper function is available and should be
used for histogram names in this format:
_hist1 = bookHistogram1D(1, 1, 1)

That’s it! If you need the bin edges without booking a persistent
histogram (e.g. for booking a temporary LWH histogram), use
binEdges(name) or binEdges(d,x,y).

24/27

Jets (1)

There are many more projections, but one more important set
which we’d like to dwell on is those to construct jets. JetAlg is
the main projection interface for doing this, but almost all jets
are actually constructed with FastJet, via the explicit FastJets
projection.

The FastJets constructor defines the input particles (via a
FinalState), as well as the jet algorithm and its parameters:

const FinalState fs(-3.2, 3.2);
addProjection(fs, "FS");
FastJets fj(fs, FastJets::ANTIKT, 0.6);
fj.useInvisibles();
addProjection(fj, "Jets");

Remember to #include "Rivet/Projections/FastJets.hh"

25/27

Jets (2)

Then get the jets from the jet projection, and loop over them in
decreasing pT order:

const Jets jets =
applyProjection<JetAlg>(evt, "Jets").jetsByPt();

foreach (const Jet& j, jets) {
foreach (const Particle& p, j.particles()) {

const double dr =
deltaR(j.momentum(), p.momentum());

}
}

Check out the Rivet/Math/MathUtils.hh header for more handy
functions like deltaR.

26/27

THE END

27/27

	Introduction
	First Rivet runs
	Writing a first analysis
	Writing a data analysis

