Rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

MC_VH2BB

MC unboosted VH2bb validation plots
Experiment: (LHC)
Status: VALIDATED
Authors:
  • Ben Smart
  • Andy Buckley
No references listed
Beams: * *
Beam energies: ANY
Run details:
  • $VH$ with $H \to b \bar{b}$ and the vector boson decaying to electron or muon channels.

Various plots for characterising the process $V H \to b\bar{b}$

Source code: MC_VH2BB.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/ZFinder.hh"
#include "Rivet/Projections/WFinder.hh"
#include "Rivet/Projections/UnstableFinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Math/LorentzTrans.hh"

namespace Rivet {


  class MC_VH2BB : public Analysis {
  public:

    /// @name Constructors etc.
    //@{

    /// Constructor
    MC_VH2BB()
      : Analysis("MC_VH2BB")
    {    }

    //@}


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      FinalState fs;
      Cut cut = Cuts::abseta < 3.5 && Cuts::pT > 25*GeV;
      ZFinder zeefinder(fs, cut, PID::ELECTRON, 65*GeV, 115*GeV, 0.2);
      declare(zeefinder, "ZeeFinder");
      ZFinder zmmfinder(fs, cut, PID::MUON, 65*GeV, 115*GeV, 0.2);
      declare(zmmfinder, "ZmmFinder");
      WFinder wefinder(fs, cut, PID::ELECTRON, 60*GeV, 100*GeV, 25*GeV, 0.2);
      declare(wefinder, "WeFinder");
      WFinder wmfinder(fs, cut, PID::MUON, 60*GeV, 100*GeV, 25*GeV, 0.2);
      declare(wmfinder, "WmFinder");

      declare(fs, "FinalState");
      declare(FastJets(fs, FastJets::ANTIKT, 0.4), "AntiKT04");
      declare(FastJets(fs, FastJets::ANTIKT, 0.5), "AntiKT05");
      declare(FastJets(fs, FastJets::ANTIKT, 0.6), "AntiKT06");

      /// Book histograms
      _h_jet_bb_Delta_eta = bookHisto1D("jet_bb_Delta_eta", 50, 0, 4);
      _h_jet_bb_Delta_phi = bookHisto1D("jet_bb_Delta_phi", 50, 0, M_PI);
      _h_jet_bb_Delta_pT = bookHisto1D("jet_bb_Delta_pT", 50,0, 500);
      _h_jet_bb_Delta_R = bookHisto1D("jet_bb_Delta_R", 50, 0, 5);
      _h_jet_b_jet_eta = bookHisto1D("jet_b_jet_eta", 50, -4, 4);
      _h_jet_b_jet_multiplicity = bookHisto1D("jet_b_jet_multiplicity", 11, -0.5, 10.5);
      _h_jet_b_jet_phi = bookHisto1D("jet_b_jet_phi", 50, 0, 2.*M_PI);
      _h_jet_b_jet_pT = bookHisto1D("jet_b_jet_pT", 50, 0, 500);
      _h_jet_H_eta_using_bb = bookHisto1D("jet_H_eta_using_bb", 50, -4, 4);
      _h_jet_H_mass_using_bb = bookHisto1D("jet_H_mass_using_bb", 50, 50, 200);
      _h_jet_H_phi_using_bb = bookHisto1D("jet_H_phi_using_bb", 50, 0, 2.*M_PI);
      _h_jet_H_pT_using_bb = bookHisto1D("jet_H_pT_using_bb", 50, 0, 500);
      _h_jet_eta = bookHisto1D("jet_eta", 50, -4, 4);
      _h_jet_multiplicity = bookHisto1D("jet_multiplicity", 11, -0.5, 10.5);
      _h_jet_phi = bookHisto1D("jet_phi", 50, 0, 2.*M_PI);
      _h_jet_pT = bookHisto1D("jet_pT", 50, 0, 500);
      _h_jet_VBbb_Delta_eta = bookHisto1D("jet_VBbb_Delta_eta", 50, 0, 4);
      _h_jet_VBbb_Delta_phi = bookHisto1D("jet_VBbb_Delta_phi", 50, 0, M_PI);
      _h_jet_VBbb_Delta_pT = bookHisto1D("jet_VBbb_Delta_pT", 50, 0, 500);
      _h_jet_VBbb_Delta_R = bookHisto1D("jet_VBbb_Delta_R", 50, 0, 8);

      _h_VB_eta = bookHisto1D("VB_eta", 50, -4, 4);
      _h_VB_mass = bookHisto1D("VB_mass", 50, 60, 110);
      _h_Z_multiplicity = bookHisto1D("Z_multiplicity", 11, -0.5, 10.5);
      _h_W_multiplicity = bookHisto1D("W_multiplicity", 11, -0.5, 10.5);
      _h_VB_phi = bookHisto1D("VB_phi", 50, 0, 2.*M_PI);
      _h_VB_pT = bookHisto1D("VB_pT", 50, 0, 500);

      _h_jet_bVB_angle_Hframe = bookHisto1D("jet_bVB_angle_Hframe", 50, 0, M_PI);
      _h_jet_bVB_cosangle_Hframe = bookHisto1D("jet_bVB_cosangle_Hframe", 50, -1, 1);
      _h_jet_bb_angle_Hframe = bookHisto1D("jet_bb_angle_Hframe", 50, 0, M_PI);
      _h_jet_bb_cosangle_Hframe = bookHisto1D("jet_bb_cosangle_Hframe", 50, -1, 1);
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      const double weight = event.weight();

      const double JETPTCUT = 30*GeV;

      const ZFinder& zeefinder = apply<ZFinder>(event, "ZeeFinder");
      const ZFinder& zmmfinder = apply<ZFinder>(event, "ZmmFinder");
      const WFinder& wefinder = apply<WFinder>(event, "WeFinder");
      const WFinder& wmfinder = apply<WFinder>(event, "WmFinder");
      const Particles vectorBosons = zeefinder.bosons() + zmmfinder.bosons() + wefinder.bosons() + wmfinder.bosons();
      _h_Z_multiplicity->fill(zeefinder.bosons().size() + zmmfinder.bosons().size(), weight);
      _h_W_multiplicity->fill(wefinder.bosons().size() + wmfinder.bosons().size(), weight);

      const Jets jets = apply<FastJets>(event, "AntiKT04").jetsByPt(JETPTCUT);
      _h_jet_multiplicity->fill(jets.size(), weight);

      // Identify the b-jets
      Jets bjets;
      foreach (const Jet& jet, jets) {
        const double jetEta = jet.eta();
        const double jetPhi = jet.phi();
        const double jetPt = jet.pT();
        _h_jet_eta->fill(jetEta, weight);
        _h_jet_phi->fill(jetPhi, weight);
        _h_jet_pT->fill(jetPt/GeV, weight);

        if (jet.bTagged() && jet.pT() > JETPTCUT) {
          bjets.push_back(jet);
          _h_jet_b_jet_eta->fill( jetEta , weight );
          _h_jet_b_jet_phi->fill( jetPhi , weight );
          _h_jet_b_jet_pT->fill( jetPt , weight );
        }
      }
      _h_jet_b_jet_multiplicity->fill(bjets.size(), weight);

      // Plot vector boson properties
      foreach (const Particle& v, vectorBosons) {
        _h_VB_phi->fill(v.phi(), weight);
        _h_VB_pT->fill(v.pT(), weight);
        _h_VB_eta->fill(v.eta(), weight);
        _h_VB_mass->fill(v.mass(), weight);
      }

      // rest of analysis requires at least 1 b jets
      if(bjets.empty()) vetoEvent;

      // Construct Higgs candidates from pairs of b-jets
      for (size_t i = 0; i < bjets.size()-1; ++i) {
        for (size_t j = i+1; j < bjets.size(); ++j) {
          const Jet& jet1 = bjets[i];
          const Jet& jet2 = bjets[j];

          const double deltaEtaJJ = fabs(jet1.eta() - jet2.eta());
          const double deltaPhiJJ = deltaPhi(jet1.momentum(), jet2.momentum());
          const double deltaRJJ = deltaR(jet1.momentum(), jet2.momentum());
          const double deltaPtJJ = fabs(jet1.pT() - jet2.pT());
          _h_jet_bb_Delta_eta->fill(deltaEtaJJ, weight);
          _h_jet_bb_Delta_phi->fill(deltaPhiJJ, weight);
          _h_jet_bb_Delta_pT->fill(deltaPtJJ, weight);
          _h_jet_bb_Delta_R->fill(deltaRJJ, weight);

          const FourMomentum phiggs = jet1.momentum() + jet2.momentum();
          _h_jet_H_eta_using_bb->fill(phiggs.eta(), weight);
          _h_jet_H_mass_using_bb->fill(phiggs.mass(), weight);
          _h_jet_H_phi_using_bb->fill(phiggs.phi(), weight);
          _h_jet_H_pT_using_bb->fill(phiggs.pT(), weight);

          foreach (const Particle& v, vectorBosons) {
            const double deltaEtaVH = fabs(phiggs.eta() - v.eta());
            const double deltaPhiVH = deltaPhi(phiggs, v.momentum());
            const double deltaRVH = deltaR(phiggs, v.momentum());
            const double deltaPtVH = fabs(phiggs.pT() - v.pT());
            _h_jet_VBbb_Delta_eta->fill(deltaEtaVH, weight);
            _h_jet_VBbb_Delta_phi->fill(deltaPhiVH, weight);
            _h_jet_VBbb_Delta_pT->fill(deltaPtVH, weight);
            _h_jet_VBbb_Delta_R->fill(deltaRVH, weight);

            // Calculate boost angles
            const vector<double> angles = boostAngles(jet1.momentum(), jet2.momentum(), v.momentum());
            _h_jet_bVB_angle_Hframe->fill(angles[0], weight);
            _h_jet_bb_angle_Hframe->fill(angles[1], weight);
            _h_jet_bVB_cosangle_Hframe->fill(cos(angles[0]), weight);
            _h_jet_bb_cosangle_Hframe->fill(cos(angles[1]), weight);
          }

        }
      }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
      scale(_h_jet_bb_Delta_eta, crossSection()/sumOfWeights());
      scale(_h_jet_bb_Delta_phi, crossSection()/sumOfWeights());
      scale(_h_jet_bb_Delta_pT, crossSection()/sumOfWeights());
      scale(_h_jet_bb_Delta_R, crossSection()/sumOfWeights());
      scale(_h_jet_b_jet_eta, crossSection()/sumOfWeights());
      scale(_h_jet_b_jet_multiplicity, crossSection()/sumOfWeights());
      scale(_h_jet_b_jet_phi, crossSection()/sumOfWeights());
      scale(_h_jet_b_jet_pT, crossSection()/sumOfWeights());
      scale(_h_jet_H_eta_using_bb, crossSection()/sumOfWeights());
      scale(_h_jet_H_mass_using_bb, crossSection()/sumOfWeights());
      scale(_h_jet_H_phi_using_bb, crossSection()/sumOfWeights());
      scale(_h_jet_H_pT_using_bb, crossSection()/sumOfWeights());
      scale(_h_jet_eta, crossSection()/sumOfWeights());
      scale(_h_jet_multiplicity, crossSection()/sumOfWeights());
      scale(_h_jet_phi, crossSection()/sumOfWeights());
      scale(_h_jet_pT, crossSection()/sumOfWeights());
      scale(_h_jet_VBbb_Delta_eta, crossSection()/sumOfWeights());
      scale(_h_jet_VBbb_Delta_phi, crossSection()/sumOfWeights());
      scale(_h_jet_VBbb_Delta_pT, crossSection()/sumOfWeights());
      scale(_h_jet_VBbb_Delta_R, crossSection()/sumOfWeights());

      scale(_h_VB_eta, crossSection()/sumOfWeights());
      scale(_h_VB_mass, crossSection()/sumOfWeights());
      scale(_h_Z_multiplicity, crossSection()/sumOfWeights());
      scale(_h_W_multiplicity, crossSection()/sumOfWeights());
      scale(_h_VB_phi, crossSection()/sumOfWeights());
      scale(_h_VB_pT, crossSection()/sumOfWeights());

      scale(_h_jet_bVB_angle_Hframe, crossSection()/sumOfWeights());
      scale(_h_jet_bb_angle_Hframe, crossSection()/sumOfWeights());
      scale(_h_jet_bVB_cosangle_Hframe, crossSection()/sumOfWeights());
      scale(_h_jet_bb_cosangle_Hframe, crossSection()/sumOfWeights());
    }


    /// This should take in the four-momenta of two b's (jets/hadrons) and a vector boson, for the process VB*->VBH with H->bb
    /// It should return the smallest angle between the virtual vector boson and one of the b's, in the rest frame of the Higgs boson.
    /// It should also return (as the second element of the vector) the angle between the b's, in the rest frame of the Higgs boson.
    vector<double> boostAngles(const FourMomentum& b1, const FourMomentum& b2, const FourMomentum& vb) {
      const FourMomentum higgsMomentum = b1 + b2;
      const FourMomentum virtualVBMomentum = higgsMomentum + vb;
      const LorentzTransform lt = LorentzTransform::mkFrameTransformFromBeta(higgsMomentum.betaVec());

      const FourMomentum virtualVBMomentumBOOSTED = lt.transform(virtualVBMomentum);
      const FourMomentum b1BOOSTED = lt.transform(b1);
      const FourMomentum b2BOOSTED = lt.transform(b2);

      const double angle1 = b1BOOSTED.angle(virtualVBMomentumBOOSTED);
      const double angle2 = b2BOOSTED.angle(virtualVBMomentumBOOSTED);

      const double anglebb = b1BOOSTED.angle(b2BOOSTED);

      vector<double> rtn;
      rtn.push_back(angle1 < angle2 ? angle1 : angle2);
      rtn.push_back(anglebb);
      return rtn;
    }

    //@}


  private:

    /// @name Histograms
    //@{

    Histo1DPtr _h_Z_multiplicity, _h_W_multiplicity;
    Histo1DPtr _h_jet_bb_Delta_eta, _h_jet_bb_Delta_phi, _h_jet_bb_Delta_pT, _h_jet_bb_Delta_R;
    Histo1DPtr _h_jet_b_jet_eta, _h_jet_b_jet_multiplicity, _h_jet_b_jet_phi, _h_jet_b_jet_pT;
    Histo1DPtr _h_jet_H_eta_using_bb, _h_jet_H_mass_using_bb, _h_jet_H_phi_using_bb, _h_jet_H_pT_using_bb;
    Histo1DPtr _h_jet_eta, _h_jet_multiplicity, _h_jet_phi, _h_jet_pT;
    Histo1DPtr _h_jet_VBbb_Delta_eta, _h_jet_VBbb_Delta_phi, _h_jet_VBbb_Delta_pT, _h_jet_VBbb_Delta_R;
    Histo1DPtr _h_VB_eta, _h_VB_mass, _h_VB_phi, _h_VB_pT;
    Histo1DPtr _h_jet_bVB_angle_Hframe, _h_jet_bb_angle_Hframe, _h_jet_bVB_cosangle_Hframe, _h_jet_bb_cosangle_Hframe;
    //Histo1DPtr _h_jet_cuts_bb_deltaR_v_HpT;

    //@}

  };


  // This global object acts as a hook for the plugin system
  DECLARE_RIVET_PLUGIN(MC_VH2BB);

}