rivet is hosted by Hepforge, IPPP Durham

Rivet analyses reference

CMS_2018_I1682495

Jet mass in dijet events in $pp$ collisions at 13 TeV
Experiment: CMS (LHC)
Inspire ID: 1682495
Status: VALIDATED
Authors:
  • cms-pag-conveners-smp@cern.ch
  • Salvatore Rappoccio
References:
  • JHEP 11 (2018) 113
  • DOI 10.1007/JHEP11(2018)113
  • arXiv: 1807.05974
  • inspirehep 1682495
  • http://cms-results.web.cern.ch/cms-results/public-results/publications/SMP-16-010/index.html
Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • $pp$ QCD interactions at $\sqrt{s} = 13$ TeV. Data collected by CMS during the year 2015.

Measurements of the differential jet cross section are presented as a function of jet mass in dijet events, in bins of jet transverse momentum, with and without a jet grooming algorithm. The data have been recorded by the CMS Collaboration in proton-proton collisions at the LHC at a center-of-mass energy of 13\text{TeV} and correspond to an integrated luminosity of 2.3\fbinv. The absolute cross sections show slightly different jet transverse momentum spectra in data and Monte Carlo event generators for the settings used. Removing this transverse momentum dependence, the normalized cross section for ungroomed jets is consistent with the prediction from Monte Carlo event generators for masses below 30\% of the transverse momentum. The normalized cross section for groomed jets is measured with higher precision than the ungroomed cross section. Semi-analytical calculations of the jet mass beyond leading logarithmic accuracy are compared to data, as well as predictions at leading order and next-to-leading order, which include parton showering and hadronization. Overall, in the normalized cross section, the theoretical predictions agree with the measured cross sections within the uncertainties for masses from 10 to 30\% of the jet transverse momentum.

Source code: CMS_2018_I1682495.cc
  1// -*- C++ -*-
  2#include "Rivet/Analysis.hh"
  3#include "Rivet/Projections/FinalState.hh"
  4#include "Rivet/Projections/VetoedFinalState.hh"
  5#include "Rivet/Projections/FastJets.hh"
  6
  7#include "fastjet/contrib/SoftDrop.hh"
  8
  9namespace Rivet {
 10
 11
 12
 13  // Soft-drop and ungroomed jet mass measurement
 14  class CMS_2018_I1682495 : public Analysis {
 15  public:
 16
 17    /// @name Constructors etc.
 18    /// @{
 19
 20    /// Constructor
 21    CMS_2018_I1682495()
 22      : Analysis("CMS_2018_I1682495"),
 23        _softdrop(fjcontrib::SoftDrop(0, 0.1, 0.8) ) // parameters are beta, zcut, R0
 24    {    }
 25
 26    /// @}
 27
 28
 29    /// @name Analysis methods
 30    /// @{
 31
 32    /// Book histograms and initialise projections before the run
 33    void init() {
 34      // define a projection that keeps all the particles up to |eta|=5
 35      const FinalState fs(Cuts::abseta < 5.);
 36
 37      // use FastJet, anti-kt(R=0.8) to do the clustering
 38      declare(FastJets(fs, JetAlg::ANTIKT, 0.8), "JetsAK8");
 39
 40      // Histograms
 41      for (size_t i = 0; i < N_PT_BINS_dj; ++i ) {
 42        book(_h_ungroomedJetMass_dj[i][0], i+1+0*N_PT_BINS_dj, 1, 1); // Ungroomed mass, absolute
 43        book(_h_sdJetMass_dj[i][0],        i+1+1*N_PT_BINS_dj, 1, 1); // Groomed mass, absolute
 44        book(_h_ungroomedJetMass_dj[i][1], i+1+2*N_PT_BINS_dj, 1, 1); // Ungroomed mass, normalized
 45        book(_h_sdJetMass_dj[i][1],        i+1+3*N_PT_BINS_dj, 1, 1); // Groomed mass, normalized
 46      }
 47    }
 48
 49
 50    // Find the pT histogram bin index for value pt (in GeV), to hack a 2D histogram equivalent
 51    /// @todo Use a YODA axis/finder alg when available
 52    size_t findPtBin(double ptJ) {
 53      for (size_t ibin = 0; ibin < N_PT_BINS_dj; ++ibin) {
 54        if (inRange(ptJ, ptBins_dj[ibin], ptBins_dj[ibin+1])) return ibin;
 55      }
 56      return N_PT_BINS_dj;
 57    }
 58
 59
 60    /// Perform the per-event analysis
 61    void analyze(const Event& event) {
 62
 63      // Look at events with >= 2 jets
 64      auto jetsAK8 = apply<FastJets>(event, "JetsAK8").jetsByPt(Cuts::pT > 200*GeV and Cuts::abseta < 2.4);
 65      if (jetsAK8.size() < 2) vetoEvent;
 66
 67      // Get the leading two jets
 68      const fastjet::PseudoJet& j0 = jetsAK8[0].pseudojet();
 69      const fastjet::PseudoJet& j1 = jetsAK8[1].pseudojet();
 70
 71      // Calculate delta phi and the pt asymmetry
 72      double deltaPhi = Rivet::deltaPhi( j0.phi(), j1.phi() );
 73      double ptasym = (j0.pt() - j1.pt()) / (j0.pt() + j1.pt());
 74      if (deltaPhi < 2.0 ) vetoEvent;
 75      if (ptasym > 0.3) vetoEvent;
 76
 77      // Find the appropriate pT bins and fill the histogram
 78      const size_t njetBin0 = findPtBin(j0.pt()/GeV);
 79      const size_t njetBin1 = findPtBin(j1.pt()/GeV);
 80      if (njetBin0 < N_PT_BINS_dj && njetBin1 < N_PT_BINS_dj) {
 81        for ( size_t jbin = 0; jbin < N_CATEGORIES; jbin++ ){
 82          _h_ungroomedJetMass_dj[njetBin0][jbin]->fill(j0.m()/GeV);
 83          _h_ungroomedJetMass_dj[njetBin1][jbin]->fill(j1.m()/GeV);
 84        }
 85      }
 86
 87      // Now run the substructure algs...
 88      fastjet::PseudoJet sd0 = _softdrop(j0);
 89      fastjet::PseudoJet sd1 = _softdrop(j1);
 90      // ... and repeat
 91      if (njetBin0 < N_PT_BINS_dj && njetBin1 < N_PT_BINS_dj) {
 92        for ( size_t jbin = 0; jbin < N_CATEGORIES; jbin++ ){
 93          _h_sdJetMass_dj[njetBin0][jbin]->fill(sd0.m()/GeV);
 94          _h_sdJetMass_dj[njetBin1][jbin]->fill(sd1.m()/GeV);
 95        }
 96      }
 97    }
 98
 99
100    /// Normalise histograms etc., after the run
101    void finalize() {
102      // Normalize the normalized cross section histograms to unity,
103      for (size_t i = 0; i < N_PT_BINS_dj; ++i) {
104        normalize(_h_ungroomedJetMass_dj[i][1]);
105        normalize(_h_sdJetMass_dj[i][1]);
106      }
107      // Normalize the absolute cross section histograms to xs * lumi.
108      for (size_t i = 0; i < N_PT_BINS_dj; ++i) {
109        scale(_h_ungroomedJetMass_dj[i][0],   crossSection()/picobarn / sumOfWeights() / (ptBins_dj[i+1]-ptBins_dj[i]) );
110        scale(_h_sdJetMass_dj[i][0],          crossSection()/picobarn / sumOfWeights() / (ptBins_dj[i+1]-ptBins_dj[i]) );
111      }
112    }
113    /// @}
114
115
116  private:
117
118    /// @name FastJet grooming tools (configured in constructor init list)
119    /// @{
120    const fjcontrib::SoftDrop _softdrop;
121    /// @}
122
123
124    /// @name Histograms
125    /// @{
126    enum { PT_200_260_dj=0,
127           PT_260_350_dj,
128           PT_350_460_dj,
129           PT_460_550_dj,
130           PT_550_650_dj,
131           PT_650_760_dj,
132           PT_760_900_dj,
133           PT_900_1000_dj,
134           PT_1000_1100_dj,
135           PT_1100_1200_dj,
136           PT_1200_1300_dj,
137           PT_1300_Inf_dj,
138           N_PT_BINS_dj };
139    static const int N_CATEGORIES=2;
140    const double ptBins_dj[N_PT_BINS_dj+1]= { 200., 260., 350., 460., 550., 650., 760., 900., 1000., 1100., 1200., 1300., 13000.};
141
142    Histo1DPtr _h_ungroomedJet0pt, _h_ungroomedJet1pt;
143    Histo1DPtr _h_sdJet0pt, _h_sdJet1pt;
144    // Here, store both the absolute (index 0) and normalized (index 1) cross sections.
145    Histo1DPtr _h_ungroomedJetMass_dj[N_PT_BINS_dj][2];
146    Histo1DPtr _h_sdJetMass_dj[N_PT_BINS_dj][2];
147    /// @}
148
149
150  };
151
152
153  RIVET_DECLARE_PLUGIN(CMS_2018_I1682495);
154
155
156}