Rivet analyses referenceCMS_2018_I1682495Jet mass in dijet events in $pp$ collisions at 13 TeVExperiment: CMS (LHC) Inspire ID: 1682495 Status: VALIDATED Authors:
Beam energies: (6500.0, 6500.0) GeV Run details:
Measurements of the differential jet cross section are presented as a function of jet mass in dijet events, in bins of jet transverse momentum, with and without a jet grooming algorithm. The data have been recorded by the CMS Collaboration in proton-proton collisions at the LHC at a center-of-mass energy of 13\text{TeV} and correspond to an integrated luminosity of 2.3\fbinv. The absolute cross sections show slightly different jet transverse momentum spectra in data and Monte Carlo event generators for the settings used. Removing this transverse momentum dependence, the normalized cross section for ungroomed jets is consistent with the prediction from Monte Carlo event generators for masses below 30\% of the transverse momentum. The normalized cross section for groomed jets is measured with higher precision than the ungroomed cross section. Semi-analytical calculations of the jet mass beyond leading logarithmic accuracy are compared to data, as well as predictions at leading order and next-to-leading order, which include parton showering and hadronization. Overall, in the normalized cross section, the theoretical predictions agree with the measured cross sections within the uncertainties for masses from 10 to 30\% of the jet transverse momentum. Source code: CMS_2018_I1682495.cc 1// -*- C++ -*-
2#include "Rivet/Analysis.hh"
3#include "Rivet/Projections/FinalState.hh"
4#include "Rivet/Projections/VetoedFinalState.hh"
5#include "Rivet/Projections/FastJets.hh"
6
7#include "fastjet/contrib/SoftDrop.hh"
8
9namespace Rivet {
10
11
12
13 // Soft-drop and ungroomed jet mass measurement
14 class CMS_2018_I1682495 : public Analysis {
15 public:
16
17 /// @name Constructors etc.
18 /// @{
19
20 /// Constructor
21 CMS_2018_I1682495()
22 : Analysis("CMS_2018_I1682495"),
23 _softdrop(fjcontrib::SoftDrop(0, 0.1, 0.8) ) // parameters are beta, zcut, R0
24 { }
25
26 /// @}
27
28
29 /// @name Analysis methods
30 /// @{
31
32 /// Book histograms and initialise projections before the run
33 void init() {
34 // define a projection that keeps all the particles up to |eta|=5
35 const FinalState fs(Cuts::abseta < 5.);
36
37 // use FastJet, anti-kt(R=0.8) to do the clustering
38 declare(FastJets(fs, JetAlg::ANTIKT, 0.8), "JetsAK8");
39
40 // Histograms
41 for (size_t i = 0; i < N_PT_BINS_dj; ++i ) {
42 book(_h_ungroomedJetMass_dj[i][0], i+1+0*N_PT_BINS_dj, 1, 1); // Ungroomed mass, absolute
43 book(_h_sdJetMass_dj[i][0], i+1+1*N_PT_BINS_dj, 1, 1); // Groomed mass, absolute
44 book(_h_ungroomedJetMass_dj[i][1], i+1+2*N_PT_BINS_dj, 1, 1); // Ungroomed mass, normalized
45 book(_h_sdJetMass_dj[i][1], i+1+3*N_PT_BINS_dj, 1, 1); // Groomed mass, normalized
46 }
47 }
48
49
50 // Find the pT histogram bin index for value pt (in GeV), to hack a 2D histogram equivalent
51 /// @todo Use a YODA axis/finder alg when available
52 size_t findPtBin(double ptJ) {
53 for (size_t ibin = 0; ibin < N_PT_BINS_dj; ++ibin) {
54 if (inRange(ptJ, ptBins_dj[ibin], ptBins_dj[ibin+1])) return ibin;
55 }
56 return N_PT_BINS_dj;
57 }
58
59
60 /// Perform the per-event analysis
61 void analyze(const Event& event) {
62
63 // Look at events with >= 2 jets
64 auto jetsAK8 = apply<FastJets>(event, "JetsAK8").jetsByPt(Cuts::pT > 200*GeV and Cuts::abseta < 2.4);
65 if (jetsAK8.size() < 2) vetoEvent;
66
67 // Get the leading two jets
68 const fastjet::PseudoJet& j0 = jetsAK8[0].pseudojet();
69 const fastjet::PseudoJet& j1 = jetsAK8[1].pseudojet();
70
71 // Calculate delta phi and the pt asymmetry
72 double deltaPhi = Rivet::deltaPhi( j0.phi(), j1.phi() );
73 double ptasym = (j0.pt() - j1.pt()) / (j0.pt() + j1.pt());
74 if (deltaPhi < 2.0 ) vetoEvent;
75 if (ptasym > 0.3) vetoEvent;
76
77 // Find the appropriate pT bins and fill the histogram
78 const size_t njetBin0 = findPtBin(j0.pt()/GeV);
79 const size_t njetBin1 = findPtBin(j1.pt()/GeV);
80 if (njetBin0 < N_PT_BINS_dj && njetBin1 < N_PT_BINS_dj) {
81 for ( size_t jbin = 0; jbin < N_CATEGORIES; jbin++ ){
82 _h_ungroomedJetMass_dj[njetBin0][jbin]->fill(j0.m()/GeV);
83 _h_ungroomedJetMass_dj[njetBin1][jbin]->fill(j1.m()/GeV);
84 }
85 }
86
87 // Now run the substructure algs...
88 fastjet::PseudoJet sd0 = _softdrop(j0);
89 fastjet::PseudoJet sd1 = _softdrop(j1);
90 // ... and repeat
91 if (njetBin0 < N_PT_BINS_dj && njetBin1 < N_PT_BINS_dj) {
92 for ( size_t jbin = 0; jbin < N_CATEGORIES; jbin++ ){
93 _h_sdJetMass_dj[njetBin0][jbin]->fill(sd0.m()/GeV);
94 _h_sdJetMass_dj[njetBin1][jbin]->fill(sd1.m()/GeV);
95 }
96 }
97 }
98
99
100 /// Normalise histograms etc., after the run
101 void finalize() {
102 // Normalize the normalized cross section histograms to unity,
103 for (size_t i = 0; i < N_PT_BINS_dj; ++i) {
104 normalize(_h_ungroomedJetMass_dj[i][1]);
105 normalize(_h_sdJetMass_dj[i][1]);
106 }
107 // Normalize the absolute cross section histograms to xs * lumi.
108 for (size_t i = 0; i < N_PT_BINS_dj; ++i) {
109 scale(_h_ungroomedJetMass_dj[i][0], crossSection()/picobarn / sumOfWeights() / (ptBins_dj[i+1]-ptBins_dj[i]) );
110 scale(_h_sdJetMass_dj[i][0], crossSection()/picobarn / sumOfWeights() / (ptBins_dj[i+1]-ptBins_dj[i]) );
111 }
112 }
113 /// @}
114
115
116 private:
117
118 /// @name FastJet grooming tools (configured in constructor init list)
119 /// @{
120 const fjcontrib::SoftDrop _softdrop;
121 /// @}
122
123
124 /// @name Histograms
125 /// @{
126 enum { PT_200_260_dj=0,
127 PT_260_350_dj,
128 PT_350_460_dj,
129 PT_460_550_dj,
130 PT_550_650_dj,
131 PT_650_760_dj,
132 PT_760_900_dj,
133 PT_900_1000_dj,
134 PT_1000_1100_dj,
135 PT_1100_1200_dj,
136 PT_1200_1300_dj,
137 PT_1300_Inf_dj,
138 N_PT_BINS_dj };
139 static const int N_CATEGORIES=2;
140 const double ptBins_dj[N_PT_BINS_dj+1]= { 200., 260., 350., 460., 550., 650., 760., 900., 1000., 1100., 1200., 1300., 13000.};
141
142 Histo1DPtr _h_ungroomedJet0pt, _h_ungroomedJet1pt;
143 Histo1DPtr _h_sdJet0pt, _h_sdJet1pt;
144 // Here, store both the absolute (index 0) and normalized (index 1) cross sections.
145 Histo1DPtr _h_ungroomedJetMass_dj[N_PT_BINS_dj][2];
146 Histo1DPtr _h_sdJetMass_dj[N_PT_BINS_dj][2];
147 /// @}
148
149
150 };
151
152
153 RIVET_DECLARE_PLUGIN(CMS_2018_I1682495);
154
155
156}
|