Rivet analyses referenceATLAS_2012_I1093738Isolated prompt photon + jet cross-sectionExperiment: ATLAS (LHC) Inspire ID: 1093738 Status: VALIDATED Authors:
Beam energies: (3500.0, 3500.0) GeV Run details:
A measurement of the production cross section for isolated photons in association with jets in $pp$ collisions at $\sqrt{s} = 7$ TeV. Photons with $|\eta|<1.37$ and $E_T>25$ GeV and jets with $|y|<4.4$ and $p_T>20$ GeV are selected. The differential cross section as a function of the photon transverse energy is measured, for three leading jet rapidity configurations, separately for the cases where the photon and jet rapidities have the same or the opposite sign. The measurement uses 37 pb$^{-1}$ of integrated luminosity collected with the ATLAS detector. Source code: ATLAS_2012_I1093738.cc 1// -*- C++ -*-
2#include "Rivet/Analysis.hh"
3#include "Rivet/Projections/FinalState.hh"
4#include "Rivet/Projections/LeadingParticlesFinalState.hh"
5#include "Rivet/Projections/VetoedFinalState.hh"
6#include "Rivet/Projections/FastJets.hh"
7
8namespace Rivet {
9
10
11 /// @brief Measurement of isolated gamma + jet + X differential cross-sections
12 ///
13 /// Inclusive isolated gamma + jet cross-sections, differential in pT(gamma), for
14 /// various photon and jet rapidity configurations.
15 ///
16 /// @author Giovanni Marchiori
17 class ATLAS_2012_I1093738 : public Analysis {
18 public:
19
20 // Constructor
21 ATLAS_2012_I1093738()
22 : Analysis("ATLAS_2012_I1093738")
23 { }
24
25
26 // Book histograms and initialise projections before the run
27 void init() {
28 // Final state
29 FinalState fs;
30 declare(fs, "FS");
31
32 // Voronoi eta-phi tessellation with KT jets, for ambient energy density calculation
33 FastJets fj(fs, JetAlg::KT, 0.5);
34 fj.useJetArea(new fastjet::AreaDefinition(fastjet::VoronoiAreaSpec()));
35 declare(fj, "KtJetsD05");
36
37 // Leading photon
38 LeadingParticlesFinalState photonfs(FinalState((Cuts::etaIn(-1.37, 1.37) && Cuts::pT >= 25.0*GeV)));
39 photonfs.addParticleId(PID::PHOTON);
40 declare(photonfs, "LeadingPhoton");
41
42 // FS excluding the leading photon
43 VetoedFinalState vfs(fs);
44 vfs.addVetoOnThisFinalState(photonfs);
45 declare(vfs, "JetFS");
46
47 // Jets
48 FastJets jetpro(vfs, JetAlg::ANTIKT, 0.4);
49 jetpro.useInvisibles();
50 declare(jetpro, "Jets");
51
52 book(_h_phbarrel_jetcentral_SS ,1, 1, 1);
53 book(_h_phbarrel_jetmedium_SS ,2, 1, 1);
54 book(_h_phbarrel_jetforward_SS ,3, 1, 1);
55
56 book(_h_phbarrel_jetcentral_OS ,4, 1, 1);
57 book(_h_phbarrel_jetmedium_OS ,5, 1, 1);
58 book(_h_phbarrel_jetforward_OS ,6, 1, 1);
59 }
60
61
62 int getEtaBin(double eta, int what) const {
63 const double aeta = fabs(eta);
64 if (what == 0) return binIndex(aeta, _eta_bins_ph);
65 if (what == 1) return binIndex(aeta, _eta_bins_jet);
66 return binIndex(aeta, _eta_bins_areaoffset);
67 }
68
69
70 // Perform the per-event analysis
71 void analyze(const Event& event) {
72
73 // Get the photon
74 const FinalState& photonfs = apply<FinalState>(event, "LeadingPhoton");
75 if (photonfs.particles().size() < 1) vetoEvent;
76 const FourMomentum photon = photonfs.particles().front().momentum();
77
78 // Get the jet
79 Jets jets = apply<FastJets>(event, "Jets").jetsByPt(Cuts::pT > 20*GeV);
80 if (jets.empty()) vetoEvent;
81 FourMomentum leadingJet = jets[0].momentum();
82
83 // Require jet separated from photon
84 if (deltaR(photon, leadingJet) < 1.0) vetoEvent;
85
86 // Veto if leading jet is outside plotted rapidity regions
87 if (leadingJet.absrap() > 4.4) vetoEvent;
88
89 // Compute the jet pT densities
90 vector< vector<double> > ptDensities(_eta_bins_areaoffset.size()-1);
91 FastJets fastjets = apply<FastJets>(event, "KtJetsD05");
92 const shared_ptr<fastjet::ClusterSequenceArea> clust_seq_area = fastjets.clusterSeqArea();
93 for (const Jet& jet : fastjets.jets()) {
94 const double area = clust_seq_area->area(jet); //< Implicit call to pseudojet()
95 if (area > 1e-4 && jet.abseta() < _eta_bins_areaoffset.back()) {
96 ptDensities.at(getEtaBin(jet.abseta(), 2)) += jet.pT()/area;
97 }
98 }
99
100 // Compute the median event energy density
101 /// @todo This looks equivalent to median(ptDensities[b]) -- isn't SKIPNHARDJETS meant to be used as an offset?
102 const unsigned int SKIPNHARDJETS = 0;
103 vector<double> ptDensity;
104 for (size_t b = 0; b < _eta_bins_areaoffset.size()-1; b++) {
105 double median = 0.0;
106 if (ptDensities[b].size() > SKIPNHARDJETS) {
107 std::sort(ptDensities[b].begin(), ptDensities[b].end());
108 const int nDens = ptDensities[b].size() - SKIPNHARDJETS;
109 if (nDens % 2 == 0) {
110 median = (ptDensities[b][nDens/2]+ptDensities[b][(nDens-2)/2])/2;
111 } else {
112 median = ptDensities[b][(nDens-1)/2];
113 }
114 }
115 ptDensity.push_back(median);
116 }
117
118 // Compute photon isolation with a standard ET cone
119 const Particles fs = apply<FinalState>(event, "JetFS").particles();
120 FourMomentum mom_in_EtCone;
121 const double ISO_DR = 0.4;
122 const double CLUSTER_ETA_WIDTH = 0.25*5.0;
123 const double CLUSTER_PHI_WIDTH = (PI/128.)*7.0;
124 for (const Particle& p : fs) {
125 // Check if it's in the cone of .4
126 if (deltaR(photon, p) >= ISO_DR) continue;
127 // Check if it's in the 5x7 central core
128 if (fabs(deltaEta(photon, p)) < CLUSTER_ETA_WIDTH*0.5 &&
129 fabs(deltaPhi(photon, p)) < CLUSTER_PHI_WIDTH*0.5) continue;
130 // Increment sum
131 mom_in_EtCone += p.momentum();
132 }
133
134 // Figure out the correction (area*density)
135 const double ETCONE_AREA = PI*ISO_DR*ISO_DR - CLUSTER_ETA_WIDTH*CLUSTER_PHI_WIDTH;
136 const double correction = ptDensity[getEtaBin(photon.abseta(),2)] * ETCONE_AREA;
137
138 // Require photon to be isolated
139 if (mom_in_EtCone.Et()-correction > 4.0*GeV) vetoEvent;
140
141 const int photon_jet_sign = sign( leadingJet.rapidity() * photon.rapidity() );
142
143 // Fill histos
144 const double abs_jet_rapidity = fabs(leadingJet.rapidity());
145 const double photon_pt = photon.pT()/GeV;
146 const double abs_photon_eta = fabs(photon.eta());
147 if (abs_photon_eta < 1.37) {
148 if (abs_jet_rapidity < 1.2) {
149 if (photon_jet_sign >= 1) {
150 _h_phbarrel_jetcentral_SS->fill(photon_pt);
151 } else {
152 _h_phbarrel_jetcentral_OS->fill(photon_pt);
153 }
154 } else if (abs_jet_rapidity < 2.8) {
155 if (photon_jet_sign >= 1) {
156 _h_phbarrel_jetmedium_SS->fill(photon_pt);
157 } else {
158 _h_phbarrel_jetmedium_OS->fill(photon_pt);
159 }
160 } else if (abs_jet_rapidity < 4.4) {
161 if (photon_jet_sign >= 1) {
162 _h_phbarrel_jetforward_SS->fill(photon_pt);
163 } else {
164 _h_phbarrel_jetforward_OS->fill(photon_pt);
165 }
166 }
167 }
168
169 }
170
171
172 /// Normalise histograms etc., after the run
173 void finalize() {
174 scale(_h_phbarrel_jetcentral_SS, crossSection()/picobarn/sumOfWeights());
175 scale(_h_phbarrel_jetcentral_OS, crossSection()/picobarn/sumOfWeights());
176 scale(_h_phbarrel_jetmedium_SS, crossSection()/picobarn/sumOfWeights());
177 scale(_h_phbarrel_jetmedium_OS, crossSection()/picobarn/sumOfWeights());
178 scale(_h_phbarrel_jetforward_SS, crossSection()/picobarn/sumOfWeights());
179 scale(_h_phbarrel_jetforward_OS, crossSection()/picobarn/sumOfWeights());
180 }
181
182
183 private:
184
185 Histo1DPtr _h_phbarrel_jetcentral_SS, _h_phbarrel_jetmedium_SS, _h_phbarrel_jetforward_SS;
186 Histo1DPtr _h_phbarrel_jetcentral_OS, _h_phbarrel_jetmedium_OS, _h_phbarrel_jetforward_OS;
187
188 const vector<double> _eta_bins_ph = {0.0, 1.37, 1.52, 2.37};
189 const vector<double> _eta_bins_jet = {0.0, 1.2, 2.8, 4.4};
190 const vector<double> _eta_bins_areaoffset = {0.0, 1.5, 3.0};
191
192 };
193
194
195 RIVET_DECLARE_PLUGIN(ATLAS_2012_I1093738);
196
197
198}
|